Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by progressive cognitive dysfunction and an impaired ability to carry out daily life functions. Mitochondrial dysfunction and β-amyloid (Aβ) deposition are the most common causes of AD. Antioxidants have been shown to delay brain aging and AD development; however, it remains unknown whether the antioxidant peptide SS31 can protect mitochondrial and synaptic function and delay the progression of behavioral deficits in early-stage AD in vivo.
View Article and Find Full Text PDFObjective: The purposes were to establish standardized values for the Auditory Verbal Learning Test (AVLT) in the communities of Shijiazhuang city (China), with particular focus on the influences of age, education and sex, and to detect the discriminant validity data of the AVLT in patients with acute ischemic stroke (AIS).
Methods: 406 Chinese-speaking subjects (age: 50-84 years old) from Shijiazhuang city, were brought into this study. Using linear regression analyses, standardized values were developed for three variables of interest, including scores on short-term memory (sum of AVLT trials 1-3), delayed recall (AVLT trial 4), and an index representing recognition memory corrected for false-positive identifications (AVLT trial 5).
Depression is very common after stroke, causing multiple sequelae. We aimed to explore the efficacy of escitalopram for poststroke depression (PSD). PubMed, Embase, Scopus, Cochrane Central Register of Controlled Trials, Clinical trials.
View Article and Find Full Text PDFAging has been attributed to oxidative stress and inflammatory response, in which NF-κB and Nrf2-ARE signaling pathways play significant roles. Senescence accelerated mouse prone 8 (SAMP8) is generally used an animal model for aging studies. Here, we investigated the NF-κB and Nrf2-ARE signaling pathways in SAMP8 brains at different ages and their responses to SS31 peptide treatment.
View Article and Find Full Text PDFZhongguo Ying Yong Sheng Li Xue Za Zhi
May 2009
Aim: To explore the role of nitric oxide (NO) resulted from nNOS in the mGluR2/3 mediated-brain ischemic tolerance induced by cerebral ischemic preconditioning (CIP), the present study is undertaken to observe the influences of alpha-methyl-(4-tetrazolyl-phenyl) glycine (MTPG), an antagonist of mGluR2/3, on the expression of nNOS during the induction of the brain ischemic tolerance based on confirming the blocking effect of MTPG on the induction of the tolerance.
Methods: Thirty-six Sprague-Dawley rats, whose vertebral arteries were permanently occluded, were randomly divided into sham, CIP, ischemic insult, CIP+ ischemic insult, MTPG+ CIP and MTPG+ CIP+ ischemic insult groups. Thionin staining and immunohistochemistry were used for neuropathological evaluation and assay of nNOS expression in the hippocampal CA1 subregion of the rats.
The present study was undertaken to observe in vivo changes of expression and phosphorylation of ERK1/2 proteins during brain ischemic preconditioning and effects of inhibiting generation of nitric oxide (NO) on the changes to determine the role of ERKs in the involvement of NO participating in the acquired tolerance. Fifty-five Wistar rats were used. Brain ischemic preconditioning was performed with four-vessel occlusion for 3 min.
View Article and Find Full Text PDFZhongguo Ying Yong Sheng Li Xue Za Zhi
February 2006
Aim: To investigate the effects of the duration of cerebral ischemic preconditioning(CIP) and interval between CIP and the subsequent ischemic insult on the protection of CIP against delayed neuronal death (DND) in the CA1 hippocampus normally induced by brain ischemic insult.
Methods: Four-vessel occlusion cerebral ischemic model of rats (54) was used. The brain of the rats was sectioned and stained with thionin to show DND in the CA1 hippocampus.
The purpose of this study was to investigate the effects of limb ischemic preconditioning (LIP) on apoptosis of pyramidal neurons in the CA1 hippocampus induced by global cerebral ischemia-reperfusion in rats. Forty-six rats whose bilateral vertebral arteries were occluded permanently were assigned to one of four groups: sham group, limb ischemia group, cerebral ischemia group and LIP group. LIP was performed by occluding the bilateral femoral arteries for 10 min 3 times in an interval of 10 min.
View Article and Find Full Text PDFPharmacologically blocking or stimulating studies have showed the crucial role of adenosine receptors in the protective effect of cerebral ischemic preconditioning (CIP). However, little is know about whether the adenosine receptors are up-regulated in the process. In the present study, changes in expression of adenosine receptors in the CA1 hippocampus after a short CIP in a period of 3 min were investigated in rat four-vessel occluding (4VO) brain ischemic model using immunohistochemistry.
View Article and Find Full Text PDFZhongguo Ying Yong Sheng Li Xue Za Zhi
February 2004
Aim: To explore the effects of limb ischemic preconditioning (LIP) on cerebral ischemia/reperfusion injuries.
Methods: Thirty six wistar rats, of which bilateral vertebral arteries were occluded permanently, were randomly divided into the following 6 groups: control group, cerebral ischemic group, limb ischemic group, LIP 0 d group (cerebral ischemia was given immediately after LIP), LIP 1 d group (cerebral ischemia was given 1 d after LIP) and LIP 2 d group (cerebral ischemia was given 2 d after LIP). Global cerebral ischemia was performed by four vessels occlusion in rats.
To explore the role of metabotropic glutamate receptor 2/3 mGluR 2/3 in the induction of brain ischemic tolerance (BIT), the influences of mGluR2/3 antagonist alpha-methyl-(4-tetrazolyl-phenyl) glycine (MTPG) on the induction of BIT and expression of glial fibrillary acidic protein (GFAP) in the hippocampus were observed using thionin staining and GFAP immunohistochemical staining in a rat brain ischemic model with four-vessel occlusion (4VO). Fifty-four rats, of which bilateral vertebral arteries were occluded permanently by electrocautery, were divided into 5 groups: (1) sham operated group (n=8): the bilateral carotid common arteries (BCCA) were separated, but the blood flow was not blocked; (2) ischemia group (n=8): the blood flow of BCCA was blocked for 8 min; (3) ischemic preconditioning (IP) group (n=8): the blood flow of BCCA was occluded for 3 min as a cerebral ischemic preconditioning (CIP), and then the rats were exposed to an 8-min brain ischemic insult 24 h after the CIP; (4) MTPG+IP group (n=22): MTPG was administered 20 min before the CIP, then the rats were exposed to an 8-min brain ischemia insult 24 h after the CIP. In order to examine dosage dependency in the effect of MTPG, 4 dosages of MTPG (0.
View Article and Find Full Text PDFTo explore the role of NO in the induction of brain ischemic tolerance (BIT) in vivo, the effect of nitric oxide synthase (NOS) inhibitor L-NAME on the induction of BIT induced by cerebral ischemic preconditioning (CIP) was investigated in the hippocampal CA1 subfield in CIP and ischemic insult models established by rat four-vessel occlusion using brain tissue section and thionine staining methods. Fifty-four male Wistar rats were divided into 6 groups: (1) sham-operated group (n=6): bilateral common arteries were separated without occluding the cerebral blood flow; (2) ischemia group (n=6): an ischemic insult for 10 min was given; (3) CIP+ischemia group (n=6): 3-min CIP was preformed 72 h prior to 10-min ischemic insult; (4) L-NAME group (total n=24, n=6 for each subgroup): L-NAME (5 mg/kg, i.p.
View Article and Find Full Text PDFZhongguo Ying Yong Sheng Li Xue Za Zhi
February 2003
Aim: To explore roles of metabotropic glutamate receptor1/5 (mGluR1/5) in the induction of brain ischemic tolerance (BIT) induced by cerebral ischemic preconditioning (CIP), influences of mGluR1/5 ligand (s)-4-carboxy-3-hydroxy- phenylglycine ((s)-4C3HPG) on the induction of BIT and expression of glial fibrillary acidic protein (GFAP) in the hippocampus were observed.
Methods: Thionin staining and GFAP immunohistochemistry staining in rat 4 vessel occlusion (4VO) brain ischemic model was used. Thirty-six rats, of which bilateral vertebral arteries were occluded permanently by electrocautery, were divided into the following 4 groups: sham group; ischemic insult group, BIT group and (s)-4C3HPG group.