Background: Acupuncture has been widely used for alleviating pain. However, its mechanisms remain largely enigmatic.
Objective: In the present study, we focused on whether the analgesic effect of electroacupuncture is related to its regulation on adenosine and substance P expression.
Objectives: In spinal cord demyelination, some oligodendrocyte precursor cells (OPCs) remain in the demyelinated region but have a reduced capacity to differentiate into oligodendrocytes. This study investigated whether 'Governor Vessel' (GV) electroacupuncture (EA) would promote the differentiation of endogenous OPCs into oligodendrocytes by activating the retinoid X receptor γ (RXR-γ)-mediated signalling pathway.
Methods: Adult rats were microinjected with ethidium bromide (EB) into the T10 spinal cord to establish a model of spinal cord demyelination.
Cholera toxin B subunit (CTB) has been extensively used in the past for monosynaptic mapping. For decades, it was thought to lack the ability of transneuronal tracing. In order to investigate whether biotin conjugates of CTB (b-CTB) would pass through transneurons in the rat spinal cord, it was injected into the crushed left sciatic nerve.
View Article and Find Full Text PDFIntroduction: Severe spinal cord injury often causes temporary or permanent damages in strength, sensation, or autonomic functions below the site of the injury. So far, there is still no effective treatment for spinal cord injury. Mesenchymal stem cells (MSCs) have been used to repair injured spinal cord as an effective strategy.
View Article and Find Full Text PDFThis study attempted to graft neurotrophin-3 (NT-3) receptor (TrkC) gene modified mesenchymal stem cells (TrkC-MSCs) into the demyelinated spinal cord and to investigate whether electroacupuncture (EA) treatment could promote NT-3 secretion in the demyelinated spinal cord as well as further enhance grafted TrkC-MSCs to differentiate into oligodendrocytes, remyelination and functional recovery. Ethidium bromide (EB) was microinjected into the spinal cord of rats at T10 to establish a demyelinated model. Six groups of animals were prepared for the experiment: the sham, PBS, MSCs, MSCs+EA, TrkC-MSCs and TrkC-MSCs+EA groups.
View Article and Find Full Text PDFTransplantation of bone marrow mesenchymal stem cells (MSCs) promotes functional recovery in multiple sclerosis (MS) patients and in a murine model of MS. However, there is only a modicum of information on differentiation of grafted MSCs into oligodendrocyte-like cells in MS. The purpose of this study was to transplant neurotrophin-3 (NT-3) and retinoic acid (RA) preinduced MSCs (NR-MSCs) into a demyelinated spinal cord induced by ethidium bromide and to investigate whether EA treatment could promote NT-3 secretion in the demyelinated spinal cord.
View Article and Find Full Text PDF