Acta Crystallogr C Struct Chem
June 2022
Molecular motion in crystals has attracted much attention for the development of stimuli-responsive materials. The most studied are molecules with few atoms or highly symmetrical molecules. To develop molecules with new motion characteristics, we synthesized a charge-transfer compound, namely, tropylium hexafluoridoantimonate(V)-1,4-dimethylnaphthalene (1/1), (CH)[SbF]·CH, and studied its structural phase transition.
View Article and Find Full Text PDFInvited for the cover of this issue are Le-Ping Miao, Chao Shi, Yi Zhang and co-workers at Jiangxi University of Science and Technology. The image depicts the structure diagrams of the 3D hybrid rare-earth double perovskite compounds. The phase transition temperatures of the two compounds were indicated by the "ice and fire", respectively.
View Article and Find Full Text PDFIncreasing attention has been devoted to studying perovskite-type multifunctional stimuli-responsive materials with multiple channel physical characteristics. However, it remains challenging to simultaneously achieve multifunction and regulate structural phase transition temperature in hybrid perovskites. Here, we report two three-dimensional organic-inorganic hybrid rare-earth double perovskite compounds, (HQ) RbEu(NO ) (1, HQ=quinuclidium) and (4FHQ) RbEu(NO ) (2, 4FHQ=4-fluoro-quinuclidium), which exhibit ferroelasticity, dielectric switch, and excellent photoluminescence response.
View Article and Find Full Text PDF