Microvalves with different actuation methods offer great integrability and flexibility in operation of lab-on-chip devices. In this work, we demonstrate a hydrogel-based and optically controlled modular microvalve that can be easily integrated within a microfluidic device and actuated by an off-chip laser source. The microvalve is based on in-channel trapping of microgel particles, which are composed of poly(N-isopropylacrylamide) and polypyrrole nanoparticles.
View Article and Find Full Text PDFTo prepare a hydrogel with robust mechanical properties and programmable remotely-controlled releasing ability, we synthesized an agarose/alginate double network hydrogel incorporating polypyrrole (PPy) nanoparticles as a near-infrared (NIR) laser responsive releasing system. This hydrogel exhibited pulsatile releasing behaviours according to the laser switching while maintaining its morphology and mechanical strength.
View Article and Find Full Text PDFPoly(N-isopropylacrylamide) (pNIPAM) composite microgels incorporating polypyrrole (PPy) nanoparticles were produced using droplet microfluidics. The composite microgels exhibited site-specific de-swelling-swelling properties that were activated by near-infrared light. Their applications for programmable drug release by pulsed-light control were also demonstrated.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
November 2009
Biopolyesters of polyhydroxyalkanoates (PHAs), including poly-3-hydroxybutyrate (PHB), co-polyester of 3-hydroxybutyrate and 4-hydroxybutyrate (P3HB4HB), and co-polyester of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx) have been well investigated for their biocompatibility. For in vivo application, it is very important that the degradation products of PHAs, especially the oligomers, are not harmful to the cells and surrounding tissues. In this study, in vitro effects of oligo(3-hydroxybutyrate) (OHB), oligo(3-hydroxybutyrate-co-4-hydroxybutyrate) (O3HB4HB) and oligo(3-hydroxybutyrate-co-3-hydroxyhexanoate) (OHBHHx) on growth and differentiation of the murine beta cell line NIT-1 were investigated.
View Article and Find Full Text PDFPseudomonas putida KT2442 produces medium-chain-length (MCL) polyhydroxyalkanoates (PHA) consisting of 3-hydroxyhexanoate (HHx), 3-hydroxyoctanoate (HO), 3-hydroxydecanoate (HD), and 3-hydroxydodecanoate (HDD) from a wide-range of carbon sources. In this study, fadA and fadB genes encoding 3-ketoacyl-CoA thiolase and 3-hydroxyacyl-CoA dehydrogenase in P. putida KT2442 were knocked out to weaken the beta-oxidation pathway.
View Article and Find Full Text PDF