Phagocytes such as dendritic cells (DC) and macrophages employ phagocytosis to take up pathogenic bacteria into phagosomes, digest the bacteria and present the bacteria-derived peptide antigens to the adaptive immunity. Hence, efficient antigen presentation depends greatly on a well-regulated phagocytosis process. Lipids, particularly phosphoinositides, are critical components of the phagosomes.
View Article and Find Full Text PDFMHC class II expression is controlled mainly at transcriptional level by class II transactivator (CIITA), which is a non-DNA binding coactivator and serves as a master control factor for MHC class II genes expression. Here, we describe the function of a novel splice-isoform of CIITA, DC-expressed caspase inhibitory isoform of CIITA (or DC-CASPIC), and we show that the expression of DCCASPIC in DC is upregulated upon lipopolysaccharides (LPS) induction. DC-CASPIC localizes to mitochondria, and protein-protein interaction study demonstrates that DC-CASPIC interacts with caspases and inhibits its activity in DC.
View Article and Find Full Text PDFDendritic cells (DC) are professional antigen-presenting cells that possess specific and efficient mechanisms to initiate immune responses. Upon encounter with pathogens, immature DC will go through a maturation process that converts them to highly immunogenic mature DC. Despite the fact that nitric oxide (NO) was produced in large amounts in maturing DC, it is still unclear whether NO is the key molecule that initiates and enhances DC maturation and T cell proliferation, respectively.
View Article and Find Full Text PDF