Publications by authors named "Ronen M Kroeze"

Quantized sound waves-phonons-govern the elastic response of crystalline materials, and also play an integral part in determining their thermodynamic properties and electrical response (for example, by binding electrons into superconducting Cooper pairs). The physics of lattice phonons and elasticity is absent in simulators of quantum solids constructed of neutral atoms in periodic light potentials: unlike real solids, traditional optical lattices are silent because they are infinitely stiff. Optical-lattice realizations of crystals therefore lack some of the central dynamical degrees of freedom that determine the low-temperature properties of real materials.

View Article and Find Full Text PDF

We realize the dynamical 1D spin-orbit coupling (SOC) of a Bose-Einstein condensate confined within an optical cavity. The SOC emerges through spin-correlated momentum impulses delivered to the atoms via Raman transitions. These are effected by classical pump fields acting in concert with the quantum dynamical cavity field.

View Article and Find Full Text PDF

Sign-changing interactions constitute a crucial ingredient in the creation of frustrated many-body systems such as spin glasses. We present here the demonstration of a photon-mediated sign-changing interaction between Bose-Einstein-condensed atoms in a confocal cavity. The interaction between two atoms is of an unusual, nonlocal form proportional to the cosine of the inner product of the atoms' position vectors.

View Article and Find Full Text PDF

We observe the joint spin-spatial (spinor) self-organization of a two-component Bose-Einstein condensate (BEC) strongly coupled to an optical cavity. This unusual nonequilibrium Hepp-Lieb-Dicke phase transition is driven by an off-resonant Raman transition formed from a classical pump field and the emergent quantum dynamical cavity field. This mediates a spinor-spinor interaction that, above a critical strength, simultaneously organizes opposite spinor states of the BEC on opposite checkerboard configurations of an emergent 2D lattice.

View Article and Find Full Text PDF