Recent scaling up of partially observable Markov decision process (POMDP) solvers toward realistic applications is largely due to point-based methods that quickly converge to an approximate solution for medium-sized domains. These algorithms compute a value function for a finite reachable set of belief points, using backup operations. Point-based algorithms differ on the selection of the set of belief points and on the order by which backup operations are executed on the selected belief points.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
February 2004
Deciding whether a propositional formula in conjunctive normal form is satisfiable (SAT) is an NP-complete problem. The problem becomes linear when the formula contains binary clauses only. Interestingly, the reduction to SAT of a number of well-known and important problems--such as classical AI planning and automatic test pattern generation for circuits--yields formulas containing many binary clauses.
View Article and Find Full Text PDF