Publications by authors named "Ronen Basri"

A fundamental question for edge detection in noisy images is how faint can an edge be and still be detected. In this paper we offer a formalism to study this question and subsequently introduce computationally efficient multiscale edge detection algorithms designed to detect faint edges in noisy images. In our formalism we view edge detection as a search in a discrete, though potentially large, set of feasible curves.

View Article and Find Full Text PDF

Visual perception involves continuously choosing the most prominent inputs while suppressing others. Neuroscientists induce visual competitions in various ways to study why and how the brain makes choices of what to perceive. Recently deep neural networks (DNNs) have been used as models of the ventral stream of the visual system, due to similarities in both accuracy and hierarchy of feature representation.

View Article and Find Full Text PDF

We develop a framework for extracting a concise representation of the shape information available from diffuse shading in a small image patch. This produces a mid-level scene descriptor, comprised of local shape distributions that are inferred separately at every image patch across multiple scales. The framework is based on a quadratic representation of local shape that, in the absence of noise, has guarantees on recovering accurate local shape and lighting.

View Article and Find Full Text PDF

Automated analyses of neuronal morphology are important for quantifying connectivity and circuitry in vivo, as well as in high content imaging of primary neuron cultures. The currently available tools for quantification of neuronal morphology either are highly expensive commercial packages or cannot provide automated image quantifications at single cell resolution. Here, we describe a new software package called WIS-NeuroMath, which fills this gap and provides solutions for automated measurement of neuronal processes in both in vivo and in vitro preparations.

View Article and Find Full Text PDF

We present a bottom-up aggregation approach to image segmentation. Beginning with an image, we execute a sequence of steps in which pixels are gradually merged to produce larger and larger regions. In each step, we consider pairs of adjacent regions and provide a probability measure to assess whether or not they should be included in the same segment.

View Article and Find Full Text PDF

Human faces are remarkably similar in global properties, including size, aspect ratio, and location of main features, but can vary considerably in details across individuals, gender, race, or due to facial expression. We propose a novel method for 3D shape recovery of faces that exploits the similarity of faces. Our method obtains as input a single image and uses a mere single 3D reference model of a different person's face.

View Article and Find Full Text PDF
Approximate nearest subspace search.

IEEE Trans Pattern Anal Mach Intell

February 2011

Subspaces offer convenient means of representing information in many pattern recognition, machine vision, and statistical learning applications. Contrary to the growing popularity of subspace representations, the problem of efficiently searching through large subspace databases has received little attention in the past. In this paper, we present a general solution to the problem of Approximate Nearest Subspace search.

View Article and Find Full Text PDF

We introduce a multiscale approach that combines segmentation with classification to detect abnormal brain structures in medical imagery, and demonstrate its utility in automatically detecting multiple sclerosis (MS) lesions in 3-D multichannel magnetic resonance (MR) images. Our method uses segmentation to obtain a hierarchical decomposition of a multichannel, anisotropic MR scans. It then produces a rich set of features describing the segments in terms of intensity, shape, location, neighborhood relations, and anatomical context.

View Article and Find Full Text PDF

We present a novel automatic multiscale algorithm applied to segmentation of anatomical structures in brain MRI. The algorithm which is derived from algebraic multigrid, uses a graph representation of the image and performs a coarsening process that produces a full hierarchy of segments. Our main contribution is the incorporation of prior knowledge information into the multiscale framework through a Bayesian formulation.

View Article and Find Full Text PDF

Human action in video sequences can be seen as silhouettes of a moving torso and protruding limbs undergoing articulated motion. We regard human actions as three-dimensional shapes induced by the silhouettes in the space-time volume. We adopt a recent approach for analyzing 2D shapes and generalize it to deal with volumetric space-time action shapes.

View Article and Find Full Text PDF

This study presents a novel automatic approach for the identification of anatomical brain structures in magnetic resonance images (MRI). The method combines a fast multiscale multi-channel three dimensional (3D) segmentation algorithm providing a rich feature vocabulary together with a support vector machine (SVM) based classifier. The segmentation produces a full hierarchy of segments, expressed by an irregular pyramid with only linear time complexity.

View Article and Find Full Text PDF

Motivation: Secondary structures are key descriptors of a protein fold and its topology. In recent years, they facilitated intensive computational tasks for finding structural homologues, fold prediction and protein design. Their popularity stems from an appealing regularity in patterns of geometry and chemistry.

View Article and Find Full Text PDF

We present a novel approach that allows us to reliably compute many useful properties of a silhouette. Our approach assigns, for every internal point of the silhouette, a value reflecting the mean time required for a random walk beginning at the point to hit the boundaries. This function can be computed by solving Poisson's equation, with the silhouette contours providing boundary conditions.

View Article and Find Full Text PDF

Finding salient, coherent regions in images is the basis for many visual tasks, and is especially important for object recognition. Human observers perform this task with ease, relying on a system in which hierarchical processing seems to have a critical role. Despite many attempts, computerized algorithms have so far not demonstrated robust segmentation capabilities under general viewing conditions.

View Article and Find Full Text PDF

Global analyses of RNA expression levels are useful for classifying genes and overall phenotypes. Often these classification problems are linked, and one wants to find "marker genes" that are differentially expressed in particular sets of "conditions." We have developed a method that simultaneously clusters genes and conditions, finding distinctive "checkerboard" patterns in matrices of gene expression data, if they exist.

View Article and Find Full Text PDF