Tight homeostatic control of cholesterol concentration within the complex tissue microenvironment of the retina is the hallmark of a healthy eye. By contrast, dysregulation of biochemical mechanisms governing retinal cholesterol homeostasis likely contributes to the aetiology and progression of age-related macular degeneration (AMD). While the signalling mechanisms maintaining cellular cholesterol homeostasis are well-studied, a systems-level description of molecular interactions regulating cholesterol balance within the human retina remains elusive.
View Article and Find Full Text PDFFront Cell Dev Biol
September 2023
Although cholesterol is essential for cellular viability and proliferation, it is highly toxic in excess. The concentration of cellular cholesterol must therefore be maintained within tight tolerances, and is thought to be subject to a stringent form of homeostasis known as Robust Perfect Adaptation (RPA). While much is known about the cellular signalling interactions involved in cholesterol regulation, the specific chemical reaction network structures that might be responsible for the robust homeostatic regulation of cellular cholesterol have been entirely unclear until now.
View Article and Find Full Text PDFIn age-related macular degeneration (AMD), there is, in common with many other age-related diseases, the need to distinguish between changes in the ageing eye that lead to disease and those changes that are considered part of a healthy, ageing eye. Various studies investigating the multitude of mechanisms involved in the aetiology of AMD exist within the field of ophthalmology and related medical fields, yet many aspects of it remain poorly understood and only a limited number of therapies are available. A recent study relates drusen's topographically cellular characteristics to the neural retina's metabolic needs and associated cholesterol involvement within the retina.
View Article and Find Full Text PDF