Publications by authors named "Rondine Allen"

Research and development of gene therapies and cell- or tissue-based therapies has experienced exponential growth in recent decades and the potential for these products to treat diverse, often rare, clinical indications is promising. The Office of Therapeutic Products (OTP) in the Center for Biologics Evaluation and Research (CBER) at the United States Food and Drug Administration (US FDA) is responsible for the regulation of these products, among others, throughout the entire product lifecycle. This chapter provides an overview of the science- and data-driven approach to US FDA regulatory oversight of cell and gene therapy (CGT) products to ensure their safety and efficacy.

View Article and Find Full Text PDF

Adenovirus (AdV) is one of the most widely used vectors for gene therapy and vaccine studies due to its excellent transduction efficiency, capacity for large transgenes, and high levels of gene expression. When administered intravascularly, the fate of AdV vectors is heavily influenced by interactions with host plasma proteins. Some plasma proteins can neutralize AdV, but AdV can also specifically bind plasma proteins that protect against neutralization and preserve activity.

View Article and Find Full Text PDF

PEGylated polylysine peptides represent a new class of scavenger receptor inhibitors that may find utility at inhibiting DNA nanoparticle uptake by Kupffer cells in the liver. PEG-peptides inhibit scavenger receptors in the liver by a novel mechanism involving in situ formation of albumin nanoparticles. The present study developed a new in vivo assay used to explore the structure-activity-relationships of PEG-peptides to find potent scavenger receptor inhibitors.

View Article and Find Full Text PDF

PEGylated polylysine peptides of the general structure PEG30 kDa-Cys-Trp-LysN (N = 10 to 30) were used to form fully condensed plasmid DNA (pGL3) polyplexes at a ratio of 1 nmol of peptide per μg of DNA (ranging from N:P 3:1 to 10:1 depending on Lys repeat). Co-administration of 5 to 80 nmols of excess PEG-peptide with fully formed polyplexes inhibited the liver uptake of (125)I-pGL3-polyplexes. The percent inhibition was dependent on the PEG-peptide dose and was saturable, consistent with inhibition of scavenger receptors.

View Article and Find Full Text PDF

Background: The reliable identification of proteins containing 50 or fewer amino acids is difficult due to the limited information content in short sequences. The 37 amino acid CydX protein in Escherichia coli is a member of the cytochrome bd oxidase complex, an enzyme found throughout Eubacteria. To investigate the extent of CydX conservation and prevalence and evaluate different methods of small protein homologue identification, we surveyed 1095 Eubacteria species for the presence of the small protein.

View Article and Find Full Text PDF

Cytochrome bd oxidase operons from more than 50 species of bacteria contain a short gene encoding a small protein that ranges from ∼30 to 50 amino acids and is predicted to localize to the cell membrane. Although cytochrome bd oxidases have been studied for more than 70 years, little is known about the role of this small protein, denoted CydX, in oxidase activity. Here we report that Escherichia coli mutants lacking CydX exhibit phenotypes associated with reduced oxidase activity.

View Article and Find Full Text PDF