To investigate the remediation effects of various modified biochar materials derived from different impregnation agents on Cd- and Pb-contaminated calcareous soil, nitrogen (N-), phosphorus (P-), sulfur (S-), and iron (Fe-) modified biochar materials (NBC, PBC, SBC, FBC) were fabricated through the impregnation-pyrolysis method and employed to immobilize Pb and Cd in the calcareous soil. The characterization results showed that NBC exhibited an uneven pore size distribution and increased aromaticity, while PBC and SBC had increased pH and ash content. Pot experiments demonstrated significantly different effects of various modified biochar materials on soil immobilization and plant uptake of Cd and Pb.
View Article and Find Full Text PDFBackground: Selenium (Se) is a vital micronutrient for maintaining homeostasis in the human body. Selenium nanoparticles (SeNPs) have demonstrated improved bioavailability compared to both inorganic and organic forms of Se. Therefore, supplementing with elemental Se in its nano-form is highly promising for biomedical applications related to Se deficiency.
View Article and Find Full Text PDFThe rapid global population growth since the early 2000s has significantly increased the demand for agricultural products, leading to widespread pesticide use, particularly organophosphorus pesticides (OPPs). This extensive application poses severe environmental risks by contaminating air, soil, and water resources. To protect groundwater quality, it is crucial to understand the transport and fate of these pesticides in soil and sediment.
View Article and Find Full Text PDFAn approach that combines NMR spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS) and advanced tensor decomposition algorithms with deep learning procedures was applied for the classification of Croatian continental sparkling wines by their geographical origin. It has been demonstrated that complex high-dimensional NMR or ICP-MS data cannot be classified by higher-order tensor decomposition alone. Extension of the procedure by deep reinforcement learning resulted in an exquisite neural network predictive model for the classification of sparkling wines according to their geographical origin.
View Article and Find Full Text PDFBackground: Recent papers on LA-ICP-MS have reported that certain elements are transported in particulate form, others in gaseous form and still others in a combination of both upon ablation of C-based materials. These two phases display different transport behaviour characteristics, potentially causing smearing in elemental maps, and could be processed differently in the ICP which raises concerns as to accuracy of quantification and emphasizes the need for matrix-matching of external standards. This work aims at a better understanding of two-phase sample transport by evaluating the peak profile changes observed upon varying parameters such as laser energy density and wavelength.
View Article and Find Full Text PDFAddressing the growing need for environmentally friendly fungicides in agriculture, this study explored the potential of biopolymer microparticles loaded with metal ions as a novel approach to combat fungal pathogens. Novel alginate microspheres and chitosan/alginate microcapsules loaded with zinc or with zinc and silver ions were prepared and characterized (microparticle size, morphology, topography, encapsulation efficiency, loading capacity, and swelling behavior). Investigation of molecular interactions in microparticles using FTIR-ATR spectroscopy exhibited complex interactions between all constituents.
View Article and Find Full Text PDFThe goal of this research is the statistical optimisation of the chemical stability of hybrid microwave-sintered alumina ceramics in nitric acid. The chemical stability of ceramic materials in corrosive media depends on many parameters, such as the chemical and phase composition of the ceramics, the properties of the aggressive medium (concentration, temperature, and pressure), and the exposure time. Therefore, the chemical stability of alumina ceramics in different aqueous nitric acid solution concentrations (0.
View Article and Find Full Text PDFIn Europe alone, >200 million m of river sediments are dredged each year, part of which are contaminated to such an extent that they have to be landfilled. This study compares the use of biochar and hydrochar for the remediation of sediment contaminated with pentachlorobenzene, hexachlorobenzene, lindane, trifluralin, alachlor, simazine, and atrazine with the motivation to make sediments contaminated by such priority substances usable as arable land for growing energy crops. Biochar and hydrochar originating from Miscanthus giganteus and Beta vulgaris shreds were compared for their potential to reduce contaminant associated risk in sediments.
View Article and Find Full Text PDFThe development of ceramic materials resistance in various aggressive media combined with required mechanical properties is of considerable importance for enabling the wider application of ceramics. The corrosion resistance of ceramic materials depends on their purity and microstructure, the kind of aggressive media used and the ambient temperature. Therefore, the corrosion resistance of alumina ceramics in aqueous HNO solutions of concentrations of 0.
View Article and Find Full Text PDFBackground: Environmental pollution has been a recognized problem for human health and the ecosystem. Remediation is usually costly and time-consuming, so researchers' attention has been drowning to develop and use new materials. This review aims to summarize the recent development of carbon-based materials used for environmental management.
View Article and Find Full Text PDFThe application of three simple and cost-effective technologies for ex situ remediation of the sediment of Begej River in Serbia is presented in this paper. In the first step, conventional electrokinetic treatment (EK) was carried out to reduce the amount of contaminated sediment and enhance the accumulation of metals. Subsequently, stabilization/solidification (S/S) treatment was applied to the remaining portion of polluted sediment to immobilize the accumulated metals.
View Article and Find Full Text PDFErodium cicutarium is known for its total polyphenolic content, but this work reveals the first highly detailed profile of E. cicutarium, obtained with UHPLC-LTQ OrbiTrap MS and UHPLC-QqQ-MS/MS techniques. A total of 85 phenolic compounds were identified and 17 constituents were quantified.
View Article and Find Full Text PDFThe simultaneous adsorption of metal ions on bare and functionalized zero-valent iron nanoparticles (nZVI) from aqueous solution was tested using inductively coupled plasma optical emission spectrometry (ICP-OES). The nanomaterials were synthetized using borohydride reduction of iron salt followed by addition of EDTA and pyridine-2,6-dicarboxylic acid (dipicolinic acid, PDCA) in different molar ratios. Functionalized materials were characterized by FT-IR, XRD and SEM-EDS methods.
View Article and Find Full Text PDFSediment represents a sink for toxic and persistent chemicals such as hexachlorobenzene (HCB) and lindane (γ-HCH). This paper investigates the possibility of reducing the risks associated with the presence of these pollutants in sediments by amending the sediment with carbon-rich materials (activated carbon (AC) and humus (HC)) to sequester the contaminants and render them biologically unavailable. The effects of the dose and contact time between the sediment and the carbon-rich amendments on the effectiveness of the detoxification are estimated.
View Article and Find Full Text PDFPhytotechnologies have been used worldwide to remediate and restore damaged ecosystems, especially those caused by industrial byproducts leaching into rivers and other waterways. The objective of this study was to test the growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments from the Great Bačka Canal near Vrbas City, Serbia. The sediments were applied to greenhouse-grown trees of Populus deltoides Bartr.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) are amongst the most abundant contaminants found in the aquatic environment. Due to their toxicity and carcinogenicity, their sources, fate, behaviour, and cleanup techniques have been widely investigated in the last several decades. When entering the sediment-water system, PAH fate is determined by particular PAH and sediment physico-chemical properties.
View Article and Find Full Text PDFMost regional municipal solid waste landfills in Serbia are operated without control of landfill leachate and gas or with no regard for implementation of national and European legislation. For the first time in Serbia, groundwater and soil at a landfill were subject to systematic annual monitoring according to national, European legislation and adopted methodologies. Characterisation of the groundwater and soil samples from the landfill included ten metals (Fe, Mn, As, Zn, Cd, Pb, Ni, Cr, Cu and Hg), 16 EPA PAHs, nutrients and certain physicochemical parameters, in order to assess the risks such poorly controlled landfills pose to the environment.
View Article and Find Full Text PDFDue to the anaerobic nature of aquatic sediments, the anaerobic treatment of sediments utilizing already present microflora represents an interesting treatment option. Contaminated sediment can contain a variety of organic contaminants, with easily degradable organics usually present in the higher amounts, along with traces of specific organic pollutants (total petroleum hydrocarbons and polycyclic aromatic hydrocarbons). This study applies a comprehensive approach to contaminated sediment treatment which covers all the organic contaminants present in the sediment.
View Article and Find Full Text PDFEvaluation of the bioavailable fractions of organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) is extremely important for assessing their risk to the environment. This available fraction, which can be solubilised and/or easily extracted, is believed to be the most accessible for bioaccumulation, biosorption and/or transformation. Sediment organic matter (OM) and clay play an important role in the biodegradation and bioavailability of PAHs.
View Article and Find Full Text PDFThis study examined a method for determination of rhodium (Rh), palladium (Pd) and platinum (Pt) in particulate matter using standard solutions, model samples and certified reference materials (NIST 1648a and ERM CZ120). The method was based on microwave digestion followed by inductively coupled plasma mass spectrometry (ICP-MS). The results showed that the stability of the standard solution mixture of Rh, Pd and Pt was better when chlorides were present in the solution.
View Article and Find Full Text PDFThe wastewater canal Vojlovica of the Pančevo industrial area, Serbia, is the main collector of the effluents from the local industrial complex. The canal is directly connected to the Europe's second largest river, the Danube. Here, we present a chemical and microbiological analysis of the sediment in order to determine the fate of pollutants over the years, as well as its current condition.
View Article and Find Full Text PDFThe production of zero-valent iron nanoparticles, using extracts from natural products, represents a green and environmentally friendly method. Synthesis of 'green' zero-valent nanoparticles (nZVI) using oak and mulberry leaf extracts (OL-nZVI and ML-nZVI) proved to be a promising approach for Ni(II) and Cu(II) removal from aqueous solutions. Characterization of the produced green nZVI materials had been conducted previously and confirmed the formation of nanosize zero-valent iron particles within the size range of 10-30 nm, spherical with minimum agglomeration observed by transmission electron microscopy and scanning electron microscope morphology measurements.
View Article and Find Full Text PDFDetermination of metal content in biominerals provides essential information with respect to relations between biomineralization processes and environmental status. Mussels are species that have a great potential as bio-marker species and therefore, they are in the focus of numerous biomineralization and ecological studies. In this study, elemental profile of mussel shell of Noah's Ark (Arca noe, Linnaeus, 1758), which inhabit eastern Adriatic Sea was obtained by determination of seventeen elements content using inductively coupled plasma optical emission spectrometry (ICP-OES).
View Article and Find Full Text PDFLarge amounts of sediment are dredged globally every year. This sediment is often contaminated with low concentrations of metals, polycyclic aromatic hydrocarbons, pesticides and other organic pollutants. Some of this sediment is disposed of on land, creating a need for risk assessment of the sediment disposal method, to minimize the degradation of environmental quality and prevent risks to human health.
View Article and Find Full Text PDF