Process analytical technology (PAT) tools such as Raman Spectroscopy have become established tools for real time measurement of CHO cell bioreactor process variables and are aligned with the QbD approach to manufacturing. These tools can have a significant impact on process development if adopted early, creating an end-to-end PAT/QbD focused process. This study assessed the impact of Raman based feedback control on early and late phase development bioreactors by using a Raman based PLS model and PAT management system to control glucose in two CHO cell line bioreactor processes.
View Article and Find Full Text PDFThe Quality by Design (QbD) approach to the production of therapeutic monoclonal antibodies (mAbs) emphasizes an understanding of the production process ensuring product quality is maintained throughout. Current methods for measuring critical quality attributes (CQAs) such as glycation and glycosylation are time and resource intensive, often, only tested offline once per batch process. Process analytical technology (PAT) tools such as Raman spectroscopy combined with chemometric modeling can provide real time measurements process variables and are aligned with the QbD approach.
View Article and Find Full Text PDFChromatography resins used for purifying biopharmaceuticals are generally dedicated to a single product. In good manufacturing practice (GMP) facilities that manufacture a limited amount of any particular product, this practice can result in the resin being used for a fraction of its useful life. A methodology for extending resin reuse to multiple products is described.
View Article and Find Full Text PDF