Publications by authors named "Ronan C O'Malley"

Article Synopsis
  • Plant growth relies on both internal and external signals that regulate cell division, elongation, and wall thickening, with mechanical forces playing a crucial role in this process.
  • The study focuses on a bZIP transcription factor called SWIZ, which is involved in grass plants’ response to mechanical touch, leading to changes like reduced stem height and increased diameter.
  • Activation of touch-responsive genes was observed in roots after mechanostimulation, highlighting the unique role of SWIZ in regulating gene expression and providing new insights into how grasses perceive and respond to mechanical stimuli.
View Article and Find Full Text PDF

Plants depend on the combined action of a shoot-root-soil system to maintain their anchorage to the soil. Mechanical failure of any component of this system results in lodging, a permanent and irreversible inability to maintain vertical orientation. Models of anchorage in grass crops identify the compressive strength of roots near the soil surface as key determinant of resistance to lodging.

View Article and Find Full Text PDF
Article Synopsis
  • The inflorescence morphology in Hall's panicgrass (Panicum hallii) plays a vital role in flower and seed production, which helps plants adapt to their environment.
  • The study compares the transcriptome and DNA methylome of two ecotypes (upland with compact inflorescence and lowland with open inflorescence) to understand the molecular differences driving their divergence.
  • Findings show significant changes in gene expression and DNA methylation patterns, particularly in gene regulatory regions, suggesting the influence of cytokinin signaling on the evolution of inflorescence in P. hallii.
View Article and Find Full Text PDF

Different high temperatures adversely affect crop and algal yields with various responses in photosynthetic cells. The list of genes required for thermotolerance remains elusive. Additionally, it is unclear how carbon source availability affects heat responses in plants and algae.

View Article and Find Full Text PDF

Chromatin modifications are epigenetic regulatory features with major roles in various cellular events, yet they remain understudied in algae. We interrogated the genome-wide distribution pattern of mono- and trimethylated histone H3 lysine 4 (H3K4) using chromatin-immunoprecipitation followed by deep-sequencing (ChIP-seq) during key phases of the Chlamydomonas cell cycle: early G phase, Zeitgeber Time 1 (ZT1), when cells initiate biomass accumulation, S/M phase (ZT13) when cells are replicating DNA and undergoing mitosis, and late G phase (ZT23) when they are quiescent. Tri-methylated H3K4 was predominantly enriched at transcription start sites of the majority of protein coding genes (85%).

View Article and Find Full Text PDF

The eukaryotic green alga is a reference organism for studying carbon partitioning and a promising candidate for the production of biofuel precursors. Recent transcriptome profiling transformed our understanding of its biology and generally algal biology, but epigenetic regulation remains understudied and represents a fundamental gap in our understanding of algal gene expression. Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is a powerful tool for the discovery of such mechanisms, by identifying genome-wide histone modification patterns and transcription factor-binding sites alike.

View Article and Find Full Text PDF

ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) AND ATXR6 are required for the deposition of H3K27me1 and for maintaining genomic stability in Reduction of ATXR5/6 activity results in activation of DNA damage response genes, along with tissue-specific derepression of transposable elements (TEs), chromocenter decompaction, and genomic instability characterized by accumulation of excess DNA from heterochromatin. How loss of ATXR5/6 and H3K27me1 leads to these phenotypes remains unclear. Here we provide extensive characterization of the hypomorphic mutant by comprehensively examining gene expression and epigenetic changes in the mutant.

View Article and Find Full Text PDF

Organisms orchestrate cellular functions through transcription factor (TF) interactions with their target genes, although these regulatory relationships are largely unknown in most species. Here we report a high-throughput approach for characterizing TF-target gene interactions across species and its application to 354 TFs across 48 bacteria, generating 17,000 genome-wide binding maps. This dataset revealed themes of ancient conservation and rapid evolution of regulatory modules.

View Article and Find Full Text PDF

Microbial biosynthetic gene clusters (BGCs) encoding secondary metabolites are thought to impact a plethora of biologically mediated environmental processes, yet their discovery and functional characterization in natural microbiomes remains challenging. Here we describe deep long-read sequencing and assembly of metagenomes from biological soil crusts, a group of soil communities that are rich in BGCs. Taking advantage of the unusually long assemblies produced by this approach, we recovered nearly 3,000 BGCs for analysis, including 712 full-length BGCs.

View Article and Find Full Text PDF

Accurate nutrient sensing is important for rapid fungal growth and exploitation of available resources. Sulfur is an important nutrient source found in a number of biological macromolecules, including proteins and lipids. The model filamentous fungus Neurospora crassa is capable of utilizing sulfur found in a variety of sources from amino acids to sulfate.

View Article and Find Full Text PDF

Progress in sequencing, microfluidics, and analysis strategies has revolutionized the granularity at which multicellular organisms can be studied. In particular, single-cell transcriptomics has led to fundamental new insights into animal biology, such as the discovery of new cell types and cell type-specific disease processes. However, the application of single-cell approaches to plants, fungi, algae, or bacteria (environmental organisms) has been far more limited, largely due to the challenges posed by polysaccharide walls surrounding these species' cells.

View Article and Find Full Text PDF

Sensing available nutrients and efficiently utilizing them is a challenge common to all organisms. The model filamentous fungus is capable of utilizing a variety of inorganic and organic nitrogen sources. Nitrogen utilization in is regulated by a network of pathway-specific transcription factors that activate genes necessary to utilize specific nitrogen sources in combination with nitrogen catabolite repression regulatory proteins.

View Article and Find Full Text PDF

Filamentous fungi, such as , are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling of on 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates.

View Article and Find Full Text PDF

Drought is the most important environmental stress limiting crop yields. The C4 cereal sorghum [ (L.) Moench] is a critical food, forage, and emerging bioenergy crop that is notably drought-tolerant.

View Article and Find Full Text PDF

Single-cell transcriptome profiling of heterogeneous tissues can provide high-resolution windows into developmental dynamics and environmental responses, but its application to plants has been limited. Here, we used the high-throughput Drop-seq approach to profile >12,000 cells from Arabidopsis roots. This identified numerous distinct cell types, covering all major root tissues and developmental stages, and illuminated specific marker genes for these populations.

View Article and Find Full Text PDF

Background: Transcription factors (TFs) play a key role in regulating plant development and response to environmental stimuli. While most genes revert to single copy after whole genome duplication (WGD) event, transcription factors are retained at a significantly higher rate. Little is known about how TF duplicates have diverged in their expression and regulation, the answer to which may contribute to a better understanding of the elevated retention rate among TFs.

View Article and Find Full Text PDF

Grass biomass is comprised chiefly of secondary walls that surround fiber and xylem cells. A regulatory network of interacting transcription factors in part regulates cell wall thickening. We identified Brachypodium distachyon SECONDARY WALL ASSOCIATED MYB1 (SWAM1) as a potential regulator of secondary cell wall biosynthesis based on gene expression, phylogeny, and transgenic plant phenotypes.

View Article and Find Full Text PDF

Maintenance of cell integrity and cell-to-cell communication are fundamental biological processes. Filamentous fungi, such as , depend on communication to locate compatible cells, coordinate cell fusion, and establish a robust hyphal network. Two MAP kinase (MAPK) pathways are essential for communication and cell fusion in : the cell wall integrity/MAK-1 pathway and the MAK-2 (signal response) pathway.

View Article and Find Full Text PDF

To enable low-cost, high-throughput generation of cistrome and epicistrome maps for any organism, we developed DNA affinity purification sequencing (DAP-seq), a transcription factor (TF)-binding site (TFBS) discovery assay that couples affinity-purified TFs with next-generation sequencing of a genomic DNA library. The method is fast, inexpensive, and more easily scaled than chromatin immunoprecipitation sequencing (ChIP-seq). DNA libraries are constructed using native genomic DNA from any source of interest, preserving cell- and tissue-specific chemical modifications that are known to affect TF binding (such as DNA methylation) and providing increased specificity as compared with in silico predictions based on motifs from methods such as protein-binding microarrays (PBMs) and systematic evolution of ligands by exponential enrichment (SELEX).

View Article and Find Full Text PDF

The epigenome orchestrates genome accessibility, functionality, and three-dimensional structure. Because epigenetic variation can impact transcription and thus phenotypes, it may contribute to adaptation. Here, we report 1,107 high-quality single-base resolution methylomes and 1,203 transcriptomes from the 1001 Genomes collection of Arabidopsis thaliana.

View Article and Find Full Text PDF

The cistrome is the complete set of transcription factor (TF) binding sites (cis-elements) in an organism, while an epicistrome incorporates tissue-specific DNA chemical modifications and TF-specific chemical sensitivities into these binding profiles. Robust methods to construct comprehensive cistrome and epicistrome maps are critical for elucidating complex transcriptional networks that underlie growth, behavior, and disease. Here, we describe DNA affinity purification sequencing (DAP-seq), a high-throughput TF binding site discovery method that interrogates genomic DNA with in-vitro-expressed TFs.

View Article and Find Full Text PDF

The plant hormone auxin is perceived by a family of F-box proteins called the TIR1/AFBs. Phylogenetic studies reveal that these proteins fall into four clades in flowering plants called TIR1, AFB2, AFB4, and AFB6. Genetic studies indicate that members of the TIR1 and AFB2 groups act as positive regulators of auxin signaling by promoting the degradation of the Aux/IAA transcriptional repressors.

View Article and Find Full Text PDF

The T-DNA sequence-indexed mutant collections contain insertional mutants for most Arabidopsis thaliana genes and have played an important role in plant biology research for almost two decades. By providing a large source of mutant alleles for in vivo characterization of gene function, this resource has been leveraged thousands of times to study a wide range of problems in plant biology. Our primary goal in this chapter is to provide a general guide to strategies for the effective use of the data and materials in these collections.

View Article and Find Full Text PDF

Epigenetic information, which may affect an organism's phenotype, can be stored and stably inherited in the form of cytosine DNA methylation. Changes in DNA methylation can produce meiotically stable epialleles that affect transcription and morphology, but the rates of spontaneous gain or loss of DNA methylation are unknown. We examined spontaneously occurring variation in DNA methylation in Arabidopsis thaliana plants propagated by single-seed descent for 30 generations.

View Article and Find Full Text PDF