Publications by authors named "Ronaldo L Ereno"

The number of antral follicles is considered an important fertility trait because animals with a high follicle count (HFC) produce more oocytes and embryos per cycle. Identification of these animals by genetic markers such as single nucleotide polymorphisms (SNPs) can accelerate selection of future generations. The aim of this study was to perform a genome wide association study (GWAS) on Nelore and Angus heifers with HFC and low (LFC) antral follicle counts.

View Article and Find Full Text PDF

Studies have shown that the use of equine chorionic gonadotropin (eCG), which binds both follicle stimulating hormone (FSH) and luteinizing hormone (LH) receptors, could modify the female reproductive tract. We, thus, aimed to quantify the messenger RNA (mRNA) abundance of genes related to cumulus-oocyte complexes (COCs) and embryo quality in Nelore cows (Bos taurus indicus) submitted to ovarian superstimulation using only FSH (FSH group; n = 10) or replacement of the last two doses of FSH by eCG (FSH/eCG group; n = 10). All animals were slaughtered and the ovarian antral follicles from both groups (10-14 mm in diameter) were aspirated for cumulus, oocyte and in vitro embryo production gene expression analysis.

View Article and Find Full Text PDF

The number of visible ovarian antral follicles (antral follicle count-AFC) is repeatable in bovine individuals, but highly variable between animals, and with differences between Bos taurus and Bos indicus breeds. Several studies have tried to determine the correlation between AFC and increased fertility in cattle. While the impacts of AFC on embryo production, hormonal levels, and pregnancy rates have been described, the molecular effects of AFC on bovine oviducts have not yet been investigated.

View Article and Find Full Text PDF

Follicle population is important when animals are used in assisted reproductive programs. Bos indicus animals have more follicles per follicular wave than Bos taurus animals. On the other hand, B taurus animals present better fertility when compared with B indicus animals.

View Article and Find Full Text PDF

Multiple ovulation (superovulation) and embryo transfer has been used extensively in cattle. In the past decade, superstimulatory treatment protocols that synchronise follicle growth and ovulation, allowing for improved donor management and fixed-time AI (FTAI), have been developed for zebu (Bos indicus) and European (Bos taurus) breeds of cattle. There is evidence that additional stimulus with LH (through the administration of exogenous LH or equine chorionic gonadotrophin (eCG)) on the last day of the superstimulatory treatment protocol, called the 'P-36 protocol' for FTAI, can increase embryo yield compared with conventional protocols that are based on the detection of oestrus.

View Article and Find Full Text PDF

The objective was to determine the relationship among the diameter of ovarian follicles, ovulation rate, and gene expression of the LH receptor (LHR) in Nelore cattle. In Experiment 1, ovulation was synchronized in 53 Nelore cows. Three days after ovulation, ovaries were assessed with ultrasonography, all cows were given 6.

View Article and Find Full Text PDF

Embryo transfer is a biotechnology that has been used worldwide to increase the production of offspring from female bovines. Treatments to induce multiple ovulations (superovulation) have evolved from superstimulatory protocols that depended upon detection of oestrus to treatments that synchronise follicle growth and ovulation, allowing for improved donor management and fixed-timed AI (FTAI). The protocols associated with FTAI facilitate animal handling and produce at least as many viably embryos as conventional treatment protocols that required detection of oestrus.

View Article and Find Full Text PDF