Publications by authors named "Ronaldo J Oliveira"

The diagnosis and treatment of Chagas disease (CD) in the chronic phase remains a challenge. With that in mind, a potential theranostic device based on the trypanocidal agent known as megazol and the -M(CO) (M = Re or Tc) fragment is proposed in the present work. The peripheral structure of megazol (L) was modified to obtain the compounds L (R1 = H, R2 = Me and R1 = R2 = Me), which were used in the syntheses of complexes of composition [ReBr(CO)L].

View Article and Find Full Text PDF

Coronavirus disease (COVID-19) is caused by infection with the SARS-CoV-2 virus, having already caused more than seven million deaths worldwide. Conventional techniques for SARS-CoV-2 detection have limitations, as high cost, low specificity, and longer analysis time, among others. Biosensors emerge as a necessary alternative to overcome the difficulties of current diagnostics.

View Article and Find Full Text PDF

Old Yellow Enzymes (OYEs) are flavin-dependent redox enzymes that promote the asymmetric reduction of activated alkenes. Due to the high importance of flavoenzymes in the metabolism of organisms, the interaction between OYEs from the parasites Trypanosoma cruzi and Leishmania braziliensis and three diterpene icetexanes (brussonol and two analogs), were evaluated in the present study, and differences in the binding mechanism and inhibition capacity of these molecules were examined. Although the aforementioned compounds showed poor and negligible activities against T.

View Article and Find Full Text PDF

Protein synthesis by the ribosome requires large-scale rearrangements of the 'small' subunit (SSU; ∼1 MDa), including inter- and intra-subunit rotational motions. However, with nearly 2000 structures of ribosomes and ribosomal subunits now publicly available, it is exceedingly difficult to design experiments based on analysis of all known rotation states. To overcome this, we developed an approach where the orientation of each SSU head and body is described in terms of three angular coordinates (rotation, tilt and tilt direction) and a single translation.

View Article and Find Full Text PDF

The computer-designed Top7 served as a scaffold to produce immunoreactive proteins by grafting of the 2F5 HIV-1 antibody epitope (Top7-2F5) followed by biotinylation (Top7-2F5-biotin). The resulting nonimmunoglobulin affinity proteins were effective in inducing and detecting the HIV-1 antibody. However, the grafted Top7-2F5 design led to protein aggregation, as opposed to the soluble biotinylated Top7-2F5-biotin.

View Article and Find Full Text PDF

Broadly neutralizing antibodies against HIV-1 are rare with the 2F5 antibody being one of the most protective. Insertion of an antibody epitope into a stable and small protein scaffold overcomes many of the obstacles found to produce antibodies. However, the design leads to grafting of epitopes that may cause protein aggregation.

View Article and Find Full Text PDF

This work describes the synthesis, characterization and in vitro anticancer activity of two platinum(II) complexes of the type [Pt(L1)(1,10-phen)] 1 and [Pt(L2)(1,10-phen)] 2, where L1 = 5-heptyl-1,3,4-oxadiazole-2-(3H)-thione, L2 = 5-nonyl-1,3,4-oxadiazole-2-(3H)-thione and 1,10-phen = 1,10-phenanthroline. As to the structure of these complexes, the X-ray structural analysis of 1 indicates that the geometry around the platinum(II) ion is distorted square-planar, where two 5-alkyl-1,3,4-oxadiazol-2-thione derivatives coordinate a platinum(II) ion through the sulfur atom. A chelating bidentate phenanthroline molecule completes the coordination sphere.

View Article and Find Full Text PDF

Biotin-labeled proteins are widely used as tools to study protein-protein interactions and proximity in living cells. Proteomic methods broadly employ proximity-labeling technologies based on protein biotinylation in order to investigate the transient encounters of biomolecules in subcellular compartments. Biotinylation is a post-translation modification in which the biotin molecule is attached to lysine or tyrosine residues.

View Article and Find Full Text PDF

Molecular crowding is a ubiquitous phenomenon in biological systems, with significant consequences on protein folding and stability. Small compounds, such as the osmolyte trimethylamine -oxide (TMAO), can also present similar effects. To analyze the effects arising from these solute-like molecules, we performed a series of crowded coarse-grained folding simulations.

View Article and Find Full Text PDF

This work reports a simple strategy for Candida auris genomic DNA (gDNA) detection, a multi-resistant fungus associated with nosocomial outbreaks in healthcare settings, presenting high mortality and morbidity rates. The platform was developed using gold electrode sensitized with specific DNA capture probe and ninhydrin as a novel DNA hybridization indicator. The genosensor was able to detect C.

View Article and Find Full Text PDF

Protein synthesis by the ribosome is coordinated by an intricate series of large-scale conformational rearrangements. Structural studies can provide information about long-lived states, however biological kinetics are controlled by the intervening free-energy barriers. While there has been progress describing the energy landscapes of bacterial ribosomes, very little is known about the energetics of large-scale rearrangements in eukaryotic systems.

View Article and Find Full Text PDF

Angiotensin-converting enzyme 2 (ACE2) is the host cellular receptor that locks onto the surface spike protein of the 2002 SARS coronavirus (SARS-CoV-1) and of the novel, highly transmissible and deadly 2019 SARS-CoV-2, responsible for the COVID-19 pandemic. One strategy to avoid the virus infection is to design peptides by extracting the human ACE2 peptidase domain α-helix, which would bind to the coronavirus surface protein, preventing the virus entry into the host cells. The natural α-helix peptide has a stronger affinity to SARS-CoV-2 than to SARS-CoV-1.

View Article and Find Full Text PDF

Understanding which aspects contribute to the thermostability of proteins is a challenge that has persisted for decades, and it is of great relevance for protein engineering. Several types of interactions can influence the thermostability of a protein. Among them, the electrostatic interactions have been a target of particular attention.

View Article and Find Full Text PDF

The stochastic drift-diffusion (DrDiff) theory is an approach used to characterize the dynamical properties of simulation data. With new features in transition times analyses, the framework characterized the thermodynamic free-energy profile [F(Q)], the folding time (τ), and transition path time (τ) by determining the coordinate-dependent drift-velocity [v(Q)] and diffusion [D(Q)] coefficients from trajectory time traces. In order to explore the DrDiff approach and to tune it with two other methods (Bayesian analysis and fep1D algorithm), a numerical integration of the Langevin equation with known D(Q) and F(Q) was performed and the inputted coefficients were recovered with success by the diffusion models.

View Article and Find Full Text PDF

Chagas disease remains a serious public health concern with unsatisfactory treatment outcomes due to strain-specific drug resistance and various side effects. To identify new therapeutic drugs against , we evaluated both the and activity of the organometallic gold(III) complex [Au(III)(Hdamp)(L1)]Cl (L1 = -donating thiosemicarbazone), henceforth denoted 4-Cl. Our results demonstrated that 4-Cl was more effective than benznidazole (Bz) in eliminating both the extracellular trypomastigote and intracellular amastigote forms of the parasite without cytotoxic effects on mammalian cells.

View Article and Find Full Text PDF

The class D β-lactamase OXA-143 has been described as an efficient penicillinase, oxacillinase, and carbapenemase. The D224A variant, known as OXA-231, was described in 2012 as exhibiting less activity toward imipenem and increased oxacillinase activity. Additionally, the P227S mutation was reported as a case of convergent evolution for homologous enzymes.

View Article and Find Full Text PDF

Toxoplasma gondii is an intracellular protozoan parasite responsible for toxoplasmosis, which affects humans and animals. Serologic detection of anti-T. gondii immunoglobulins plays a crucial role in the clinical diagnosis of toxoplasmosis.

View Article and Find Full Text PDF

Reactions of Ni(II) and Pd(II) precursors with S-benzyl-N-(ferrocenyl)methylenedithiocarbazate (HFedtc) led to the formation of heterobimetallic complexes of the type [M(Fedtc)] (M = Ni and Pd). The characterization of the compounds involved the determination of melting point, FTIR, UV-Vis, H NMR, elemental analysis and electrochemical experiments. Furthermore, the crystalline structures of HFedtc and [Ni(Fedtc)] were determined by single crystal X-ray diffraction.

View Article and Find Full Text PDF

Thermostable proteins are advantageous in industrial applications, as pharmaceuticals or biosensors, and as templates for directed evolution. As protein-design methodologies improve, bioengineers are able to design proteins to perform a desired function. Although many rationally designed proteins end up being thermostable, how to intentionally design de novo, thermostable proteins is less clear.

View Article and Find Full Text PDF

A theoretical stochastic diffusion framework is developed that characterizes the position-dependent diffusion coefficient [()] and drift velocity [ ()] by analysing single-molecule time traces [()]. The free-energy landscape [()] that governs the dynamics is reconstructed with the calculated and . There are many computational tools that perform this task in which some are computationaly demanding, difficult to run, and, most of the time, not directly available to the community.

View Article and Find Full Text PDF

Leishmaniasis is one of the most important neglected tropical diseases (NTDs) that are especially common among low-income populations in developing regions of Africa, Asia, and the Americas. Many natural products, particularly alkaloids, have been reported to have inhibitory activity against arginase, the key enzyme in the pathology caused by Leishmania sp. In this way, piperidine alkaloids (-)-cassine (1), (-)-spectaline (2), (-)-3-O-acetylcassine (3), and (-)-3-O-acetylspectaline (4) were isolated from Senna spectabilis flowers.

View Article and Find Full Text PDF

In order to improve the previously observed antichagasic activity of Cu(II) complexes containing 2-chlorobenzhydrazide (2-CH), we report herein the synthesis and anti-Trypanosoma cruzi activity of novel copper complexes containing 2-methoxybenzhydrazide (2-MH), 4-methoxybenzhydrazide (4-MH) and three α-diimine ligands, namely, 1,10-phenanthroline (phen), 2,2-bipyridine (bipy) and 4-4'-dimethoxy-2-2'-bipyridine (dmb). Two of these complexes showed higher in vitro anti-Trypanosoma cruzi activity when compared to benznidazole, the main drug used in Chagas disease treatment. One of them, the copper complex with 4-MH and dmb, [Cu(4-MH)(dmb)(ClO)], exhibited a higher selectivity index than that recommended for preclinical studies.

View Article and Find Full Text PDF

There are two different prion conformations: (1) the cellular natural (PrP) and (2) the scrapie (PrP), an infectious form that tends to aggregate under specific conditions. PrP and PrP are widely different regarding secondary and tertiary structures. PrP contains more and longer β-strands compared to PrP.

View Article and Find Full Text PDF

New complexes of composition [MX(HL1)] (M = Pt, Pd, X = Cl or I) and [MX(L1)] (M = Au, X = Cl; M = Pt, Pd, X = PPh) have been synthesized using a potentially tridentate thiosemicarbazone (HL1) containing an additional oxime binding site. Among other analytical methods, all the seven complexes have been structurally characterized by single crystal X-ray diffractometry. Interesting structural features such as the influence of the halide ligands on hydrogen bonds and the formation of supramolecular structures for the phosphine derivatives are discussed.

View Article and Find Full Text PDF