β-cyclodextrin (βCD) has been widely explored as an excipient for pharmaceuticals and nutraceuticals as it forms stable host-guest inclusion complexes and enhances the solubility of poorly soluble active agents. To enhance intracellular drug delivery, βCD was chemically conjugated to an 18-carbon chain cationic gemini surfactant which undergoes self-assembly to form nanoscale complexes. The novel gemini surfactant-modified βCD carrier host (hereafter referred to as 18:1βCDg) was designed to combine the solubilization and encapsulation capacity of the βCD macrocycle and the cell-penetrating ability of the gemini surfactant conjugate.
View Article and Find Full Text PDFPurpose Achieving successful gene therapy requires delivery of a gene vector specifically to the targeted tissue with efficient expression and a good safety profile. The objective of this work was to develop, characterize and determine if a novel gemini surfactant-based lipoplex systems, modified with a cancer-targeting peptide p18-4, could serve this role. Methods The targeting peptide p18-4 was either chemically coupled to a gemini surfactant backbone or physically co-formulated with the lipoplexes.
View Article and Find Full Text PDFThe unique molecular structure confers the diquaternary ammonium gemini surfactants with enhanced nucleic acid complexation ability, bottom-up design flexibility, and relatively low cytotoxicity. To capitalize on their potential as gene delivery vectors, novel structural modifications should be explored. In this work, 22 novel peptide-modified gemini surfactants with various alkyl tails and peptide spacer modifications were evaluated.
View Article and Find Full Text PDFPurpose: We have developed and evaluated novel peptide-targeted gemini surfactant-based lipoplexes designed for melanoma gene therapy.
Methods: Integrin receptor targeting peptide, cyclic-arginylglycylaspartic acid (cRGD), was either chemically coupled to a gemini surfactant backbone or physically co-formulated with lipoplexes. Several formulations and transfection techniques were developed.
Novel drug delivery systems are developed to improve the biological behavior of poorly soluble drugs and to improve therapeutic outcomes. In melanoma therapy, the goal is efficient drug delivery and mitigation of drug resistance. Melphalan (Mel), a currently used therapeutic agent for melanoma, requires solvent system for solubilization, leading to poor chemical stability.
View Article and Find Full Text PDFThe aim of this work was to elucidate the structure-activity relationship of new peptide-modified gemini surfactant-based carriers. Glycyl-lysine modified gemini surfactants that differ in the length and degree of unsaturation of their alkyl tail were used to engineer DNA nano-assemblies. To probe the optimal nitrogen to phosphate (N/P) ratio in the presence of helper lipid, in vitro gene expression and cell toxicity measurements were carried out.
View Article and Find Full Text PDFPurpose: Nanodiamonds (NDs) are emerging as an attractive tool for gene therapeutics. To reach their full potential for biological application, NDs should maintain their colloidal stability in biological milieu. This study describes the behavior of lysine-functionalized ND (lys-ND) in various dispersion media, with an aim to limit aggregation and improve the colloidal stability of ND-gene complexes called diamoplexes.
View Article and Find Full Text PDFUnderstanding the relationship of structural modifications on the assembly and disassembly of synthetic or non-viral gene delivery is crucial with regard to their rational development. This study describes the use of fluorescence correlation spectroscopy (FCS), as a new tool, to investigate the effect of systematic chemical modifications to dicationic N,N-bis(dimethylalkyl)-α,ω-alkanediammonium surfactants (gemini surfactants) on the self-assembly and physical properties of a series of gemini nanoparticles (gemini NPs). A systematic screening of 27 gemini-plasmid (GP) complexes and gemini NPs showed that their final morphology is governed by the pre-compaction of plasmid by the gemini surfactants.
View Article and Find Full Text PDFHost systems based on β-cyclodextrin (βCD) were employed as pharmaceutical carriers to encapsulate a poorly soluble drug, curcumin analogue (NC 2067), in order to increase its water solubility. βCD was chemically conjugated with an amphiphilic gemini surfactant with the ability to self-assemble and to form nanoscale supramolecular structures. The conjugated molecule, βCDgemini surfactant (βCDg), was shown to be a promising drug delivery agent.
View Article and Find Full Text PDFAim: Recently, we synthesized amino acid- and peptide-substituted gemini surfactants, 'biolipids' that exhibited high transfection efficiency in vitro. In this study, we developed these plasmid DNA and gemini surfactant lipid particles for noninvasive administration in vaginal cavity.
Material & Methods: Novel formulations of these gene delivery systems were prepared with poloxamer 407 to induce in situ gelling of the formulation and diethylene glycol monoethyl ether to improve their penetration across mucosal tissue.
Background: Curcumin analogs, including the novel compound NC 2067, are potent cytotoxic agents that suffer from poor solubility, and hence, low bioavailability. Cyclodextrin-based carriers can be used to encapsulate such agents. In order to understand the interaction between the two molecules, the physicochemical properties of the host-guest complexes of NC 2067 with β-cyclodextrin (CD) or β-cyclodextrin-gemini surfactant (CDgemini surfactant) were investigated for the first time.
View Article and Find Full Text PDFThe safe use of lipid-based drug delivery agents requires fast and sensitive qualitative and quantitative assessment of their cellular interactions. Many mass spectrometry (MS) based analytical platforms can achieve such task with varying capabilities. Therefore, four novel high-throughput MS-based quantitative methods were evaluated for the analysis of a small organic gene delivery agent: N,N-bis(dimethylhexadecyl)-1,3-propane-diammonium dibromide (G16-3).
View Article and Find Full Text PDFRationale: This study aimed at evaluating the collision-induced dissociation tandem mass spectrometric (CID-MS/MS) fragmentation patterns of novel β-cyclodextrin-substituted- and bis-pyridinium gemini surfactants currently being explored as nanomaterial drug delivery agents. In the β-cyclodextrin-substituted gemini surfactants, a β-cyclodextrin ring is grafted onto an N,N-bis(dimethylalkyl)-α,ω-aminoalkane-diammonium moiety using variable succinyl linkers. In contrast, the bis-pyridinium gemini surfactants are based on a 1,1'-(1,1'-(ethane-1,2-diylbis(sulfanediyl))bis(alkane-2,1-diyl))dipyridinium template, defined by two symmetrical N-alkylpyridinium parts connected through a fixed ethane dithiol spacer.
View Article and Find Full Text PDFDevelopment of a simple and rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the quantification of diquaternary ammonium gemini surfactants, utilized as gene deliver agents, is required for the evaluation of their post transfection fate. The continued development of efficient and safe gene delivery agents will benefit directly from an understanding of their rate of uptake, metabolism and excretion. A method is reported that is specific for the quantification of twenty-nine individual diquaternary ammonium gemini surfactant molecules and was validated for N,N-bis(dimethylhexadecyl)-1,3-propane-diammonium dibromide (G16-3) within PAM212 cell lysate according to USFDA bioanalytical method validation guidelines.
View Article and Find Full Text PDFPurpose: Cationic gemini surfactants have been studied as non-viral vectors for gene therapy. Clinical applications of cationic lipid/DNA lipoplexes are restricted by their instability in aqueous formulations. In this work, we investigated the influence of lyophilization on the essential physiochemical properties and in vitro transfection of gemini surfactant-lipoplexes.
View Article and Find Full Text PDFPurpose: Detonation nanodiamonds (NDs) are carbon-based nanomaterials that, because of their size (4-5 nm), stable inert core, alterable surface chemistry, fluorescence, and biocompatibility, are emerging as bioimaging agents and promising tools for the delivery of biochemical molecules into cellular systems. However, diamond particles possess a strong propensity to aggregate in liquid formulation media, restricting their applicability in biomedical sciences. Here, the authors describe the covalent functionalization of NDs with lysine in an attempt to develop nanoparticles able to act as suitable nonviral vectors for transferring genetic materials across cellular membranes.
View Article and Find Full Text PDFVarious analogs of curcumin show high in vitro cytotoxic activity and are potential candidates for treating a deadly skin disease, melanoma. Due to the low solubility of the drugs, a new delivery agent, namely a cationic gemini surfactant-conjugated β-cyclodextrin, was designed to incorporate novel drug candidates of the 1,5-diaryl-3-oxo-1,4-pentadienyl family. Based on physicochemical parameters, such as particle size and zeta potential, a schematic model for the potential interaction of the drug with the delivery agent was developed.
View Article and Find Full Text PDFBackground: Gene transfer using non-viral vectors offers a non-immunogenic and safe method of gene delivery. Cellular uptake and intracellular trafficking of the nanoparticles can impact on the transfection efficiency of these vectors. Therefore, understanding the physicochemical properties that may influence the cellular uptake and the intracellular trafficking can aid the design of more efficient non-viral gene delivery systems.
View Article and Find Full Text PDFGemini surfactants are cationic lipids which are utilized for both in vitro and in vivo gene delivery. Structurally, they are comprised of two hydrophobic tail regions with polar head termini that are attached to one another through a spacer region. Structural elucidation and characterization of 29 novel diquaternary ammonium gemini surfactant molecules were achieved using a quadrupole time-of-flight mass spectrometer (QqToF-MS) and a quadrupole-hexapole-quadrupole mass spectrometer (QhQ-MS).
View Article and Find Full Text PDFGene based therapy represents an important advance in the treatment of diseases that heretofore have had either no treatment or cure. To capitalize on the true potential of gene therapy, there is a need to develop better delivery systems that can protect these therapeutic biomolecules and deliver them safely to the target sites. Recently, we have designed and developed a series of novel amino acid-substituted gemini surfactants with the general chemical formula C(12)H(25) (CH(3))(2)N(+)-(CH(2))(3)-N(AA)-(CH(2))(3)-N(+) (CH(3))(2)-C(12)H(25) (AA= glycine, lysine, glycyl-lysine and, lysyl-lysine).
View Article and Find Full Text PDFGene therapy is a technique utilized to treat diseases caused by missing, defective or overexpressing genes. Although viral vectors transfect cells efficiently, risks associated with their use limit their clinical applications. Nonviral delivery systems are safer, easier to manufacture, more versatile and cost effective.
View Article and Find Full Text PDFGemini surfactants are versatile gene delivery agents because of their ability to bind and compact DNA and their low cellular toxicity. Through modification of the alkyl tail length and the chemical nature of the spacer, new compounds can be generated with the potential to improve the efficiency of gene delivery. Amino acid (glycine and lysine) and dipeptide (glycyl-lysine and lysyl-lysine) substituted spacers of gemini surfactants were synthesized, and their efficiency of gene delivery was assessed in epithelial cells for topical cutaneous and mucosal applications.
View Article and Find Full Text PDFGemini surfactants provide a significant opportunity in the development of new non-viral delivery systems designed for gene therapy applications. This review summarizes the wide range of gemini surfactant structures that have been employed for DNA transfection in vitro. A general observation is that those structures capable of inducing a wide variety of polymorphic structures (lamellar, hexagonal, or cubic phases) demonstrate higher transfection efficiencies.
View Article and Find Full Text PDFThe forces acting between glass and between mica surfaces in the presence of two cationic gemini surfactants, 1,4 diDDAB (1,4-butyl-bis(dimethyldodecylammonium bromide)) and 1,12 diDDAB (1,12-dodecyl-bis(dimethyldodecylammonium bromide)), have been investigated below the critical micelle concentration (cmc) of the surfactants using two different surface force techniques. In both cases, it was found that a recharging of the surfaces occurred at a surfactant concentration of about 0.1 x cmc, and at all surfactant concentrations investigated repulsive double-layer forces dominated the interaction at large separations.
View Article and Find Full Text PDFBackground: Increases in DNA transfection efficiencies for non-viral vectors can be achieved through rational design of novel cationic building blocks. Based on previous results examining DNA condensation by polyamines, novel gemini surfactants have been designed that incorporate aza or imino substituents within the spacer group in order to increase interactions with DNA and potentially improve their DNA transfection ability.
Methods: Transfection efficiencies and cell toxicity of gemini nanoparticles constructed from plasmid DNA, gemini surfactant, and a neutral lipid were measured in COS7 cells using a luciferase assay.