Publications by authors named "Ronald Udasin"

SignificanceCalcium release-activated calcium (CRAC) channels play key roles in the regulation of cellular signaling, transcription, and migration. Here, we describe the design, chemical synthesis, and characterization of photoswitchable channel inhibitors that can be switched on and off depending on the wavelength of light used. We use the compounds to induce light-dependent modulation of channel activity and downstream gene expression in human immune cells.

View Article and Find Full Text PDF

The NF-κB transcription factor is involved in inflammation and cell proliferation, survival, and transformation. It is a heterodimer made of p50 or p52 and a member of the Rel family of proteins. p50 and p52 are derived from limited ubiquitin- and proteasome-mediated proteolytic processing of the larger precursors p105 and p100, respectively.

View Article and Find Full Text PDF

Systems analogous to the eukaryotic ubiquitin-proteasome system have been previously identified in Archaea, and Actinobacteria (gram-positive), but not in gram-negative bacteria. Here, we report the bioinformatic identification of a novel prokaryotic ubiquitin-like protein, which we name UBact. The phyletic distribution of UBact covers at least five gram-negative bacterial phyla, including Nitrospirae, Armatimonadetes, Verrucomicroba, Nitrospinae, and Planctomycetes.

View Article and Find Full Text PDF

Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS).

View Article and Find Full Text PDF

Several metabolic pathways critical for cellular homeostasis occur in the mitochondria. Because of the evolution of mitochondria and their physical separation, these pathways have traditionally been thought to be free from regulation by the ubiquitin-proteasome system. This perception has recently been challenged by evidence for the presence of ubiquitin system components in the mitochondria.

View Article and Find Full Text PDF

Sulfur mustard and nitrogen mustard (mechlorethamine, HN2) are potent vesicants developed as chemical warfare agents. These electrophilic, bifunctional alkylating agents cause skin injury, including inflammation, edema, and blistering. HN2 covalently modifies macromolecules such as DNA, RNA, and proteins or is scavenged by glutathione, forming adducts that can contribute to toxicity.

View Article and Find Full Text PDF

Estrogens are major risk factors for the development of breast cancer; they can be metabolized to catechols, which are further oxidized to DNA-reactive quinones and semiquinones (SQs). These metabolites are mutagenic and may contribute to the carcinogenic activity of estrogens. Redox cycling of the SQs and subsequent generation of reactive oxygen species (ROS) is also an important mechanism leading to DNA damage.

View Article and Find Full Text PDF

Diquat and paraquat are nonspecific defoliants that induce toxicity in many organs including the lung, liver, kidney, and brain. This toxicity is thought to be due to the generation of reactive oxygen species (ROS). An important pathway leading to ROS production by these compounds is redox cycling.

View Article and Find Full Text PDF