Mutations in the gene encoding dynamin 2 (DNM2), a GTPase that catalyzes membrane constriction and fission, are associated with two autosomal-dominant motor disorders, Charcot-Marie-Tooth disease (CMT) and centronuclear myopathy (CNM), which affect nerve and muscle, respectively. Many of these mutations affect the pleckstrin homology domain of DNM2, yet there is almost no overlap between the sets of mutations that cause CMT or CNM. A subset of CMT-linked mutations inhibit the interaction of DNM2 with phosphatidylinositol (4,5) bisphosphate, which is essential for DNM2 function in endocytosis.
View Article and Find Full Text PDFThe cAMP and cAMP-dependent protein kinase A (PKA) signaling cascade is a ubiquitous pathway acting downstream of multiple neuromodulators. We found that the phosphorylation of phosphodiesterase-4 (PDE4) by cyclin-dependent protein kinase 5 (Cdk5) facilitated cAMP degradation and homeostasis of cAMP/PKA signaling. In mice, loss of Cdk5 throughout the forebrain elevated cAMP levels and increased PKA activity in striatal neurons, and altered behavioral responses to acute or chronic stressors.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
February 2013
Bile acid sequestrants are nonabsorbable resins designed to treat hypercholesterolemia by preventing ileal uptake of bile acids, thus increasing catabolism of cholesterol into bile acids. However, sequestrants also improve hyperglycemia and hyperinsulinemia through less characterized metabolic and molecular mechanisms. Here, we demonstrate that the bile acid sequestrant, colesevelam, significantly reduced hepatic glucose production by suppressing hepatic glycogenolysis in diet-induced obese mice and that this was partially mediated by activation of the G protein-coupled bile acid receptor TGR5 and glucagon-like peptide-1 (GLP-1) release.
View Article and Find Full Text PDFSynergistic activation by heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) and receptor tyrosine kinases distinguishes p110β from other class IA phosphoinositide 3-kinases (PI3Ks). Activation of p110β is specifically implicated in various physiological and pathophysiological processes, such as the growth of tumors deficient in phosphatase and tensin homolog deleted from chromosome 10 (PTEN). To determine the specific contribution of GPCR signaling to p110β-dependent functions, we identified the site in p110β that binds to the Gβγ subunit of G proteins.
View Article and Find Full Text PDFResveratrol, a polyphenol in red wine, has been reported as a calorie restriction mimetic with potential antiaging and antidiabetogenic properties. It is widely consumed as a nutritional supplement, but its mechanism of action remains a mystery. Here, we report that the metabolic effects of resveratrol result from competitive inhibition of cAMP-degrading phosphodiesterases, leading to elevated cAMP levels.
View Article and Find Full Text PDFCellular signal transduction machinery integrates information from multiple inputs to actuate discrete cellular behaviors. Interaction complexity exists when an input modulates the output behavior that results from other inputs. To address whether this machinery is iteratively complex--that is, whether increasing numbers of inputs produce exponential increases in discrete cellular behaviors--we examined the modulated secretion of six cytokines from macrophages in response to up to five-way combinations of an agonist of Toll-like receptor 4, three cytokines, and conditions that activated the cyclic adenosine monophosphate pathway.
View Article and Find Full Text PDFRegulation of intracellular cyclic adenosine 3 ',5 '-monophosphate (cAMP) is integral in mediating cell growth, cell differentiation, and immune responses in hematopoietic cells. To facilitate studies of cAMP regulation we developed a BRET (bioluminescence resonance energy transfer) sensor for cAMP, CAMYEL (cAMP sensor using YFP-Epac-RLuc), which can quantitatively and rapidly monitor intracellular concentrations of cAMP in vivo. This sensor was used to characterize three distinct pathways for modulation of cAMP synthesis stimulated by presumed G(s)-dependent receptors for isoproterenol and prostaglandin E(2).
View Article and Find Full Text PDFMany pathogenic organisms and their toxins target host cell receptors, the consequence of which is altered signaling events that lead to aberrant activity or cell death. A significant body of literature describes various molecular and cellular aspects of toxins associated with bacterial invasion, colonization, and host cell disruption. However, there is little information on the molecular and cellular mechanisms associated with the insecticidal action of Bacillus thuringiensis (Bt) Cry toxins.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
June 2006
Context: Some indirect evidence suggests hypothalamic control of GH secretion in acromegaly.
Objective: The objective of the study is to examine whether GH secretion in acromegaly is dependent on endogenous GHRH.
Patients And Study Design: We studied eight patients with untreated acromegaly due to a GH-producing pituitary tumor.
Catechol estrogens are steroid metabolites that elicit physiological responses through binding to a variety of cellular targets. We show here that catechol estrogens directly inhibit soluble adenylyl cyclases and the abundant trans-membrane adenylyl cyclases. Catechol estrogen inhibition is non-competitive with respect to the substrate ATP, and we solved the crystal structure of a catechol estrogen bound to a soluble adenylyl cyclase from Spirulina platensis in complex with a substrate analog.
View Article and Find Full Text PDFAdenylyl cyclases (AC), a family of enzymes that catalyze the synthesis of cyclic AMP, are critical regulators of cellular functions. The activity of adenylyl cyclase is stimulated by a range of hormone receptors, primarily via interactions with G-proteins; however, recently we identified an alternate mechanism by which growth factors sensitize adenylyl cyclase activation. We suggested that this mechanism might involve a Raf kinase-mediated serine phosphorylation of adenylyl cyclase.
View Article and Find Full Text PDFThis chapter outlines procedures for the expression of mammalian membrane-bound adenylyl cyclases (AC) in Sf9 cells and subsequent in vitro methods for assessing the activity of these cyclases. Membrane preparations derived from this overexpression system provide homogeneous sources of mammalian AC because AC that are endogenously expressed in Sf9 cells contribute low amounts of activity relative to the overexpressed enzyme. These approaches are applicable to all nine isoforms of mammalian membrane-bound AC isoforms.
View Article and Find Full Text PDFThe Alliance for Cellular Signaling is a large-scale collaboration designed to answer global questions about signalling networks. Pathways will be studied intensively in two cells--B lymphocytes (the cells of the immune system) and cardiac myocytes--to facilitate quantitative modelling. One goal is to catalyse complementary research in individual laboratories; to facilitate this, all alliance data are freely available for use by the entire research community.
View Article and Find Full Text PDFInitial steps in the identification of the Gs alpha-binding site present in mammalian adenylyl cyclases can be achieved with the use of the yeast genetic system described. It must be stressed that this system serves as a means to identify mutants that are candidates; biochemical analysis of these mutants is a next and necessary step in the confirmation of these phenotypes. The system described can be readily adapted for the isolation of additional classes of mammalian adenylyl cyclase mutants including mutants with altered regulation toward forskolin, catalytic abnormalities, or enhanced sensitivities toward activators.
View Article and Find Full Text PDF