Publications by authors named "Ronald T Toth"

Although live attenuated Rotavirus (RV) vaccines are available globally to provide protection against enteric RV disease, efficacy is substantially lower in low- to middle-income settings leading to interest in alternative vaccines. One promising candidate is a trivalent nonreplicating RV vaccine, comprising 3 truncated RV VP8 subunit proteins fused to the P2 CD4 epitope from tetanus toxin (P2-VP8-P[4/6/8]). A wide variety of analytical techniques were used to compare the physicochemical properties of these 3 recombinant fusion proteins.

View Article and Find Full Text PDF

In this work, we continue to examine excipient effects on the reversible self-association (RSA) of 2 different IgG1 monoclonal antibodies (mAb-J and mAb-C). We characterize the RSA behavior of mAb-C which, similar to mAb-J (see Part 1), undergoes concentration-dependent RSA, but by a different molecular mechanism. Five additives that affect protein hydrophobic interactions to varying extents including a chaotropic salt (guanidine hydrochloride), a hydrophobic salt (trimethylphenylammonium iodide), an aromatic amino acid derivative (tryptophan amide hydrochloride), a kosmotropic salt (sodium sulfate, NaSO), and a less polar solvent (ethanol) were evaluated to determine their effects on the solution properties, molecular properties, and RSA of mAb-C at various protein concentrations.

View Article and Find Full Text PDF

Ricin is a fast-acting protein toxin classified by the Centers for Disease Control and Prevention as a biothreat agent. In this report, we describe five new mouse mAbs directed against an immunodominant region, so-called epitope cluster II, on the surface of ricin's ribosome-inactivating enzymatic subunit A (RTA). The five mAbs were tested alongside four previously described cluster II-specific mAbs for their capacity to passively protect mice against 10× LD ricin challenge by injection.

View Article and Find Full Text PDF

We have used hydrogen exchange-mass spectrometry to characterize local backbone flexibility of 4 well-defined IgG1-Fc glycoforms expressed and purified from Pichia pastoris, 2 of which were prepared using subsequent in vitro enzymatic treatments. Progressively decreasing the size of the N-linked N297 oligosaccharide from high mannose (Man8-Man12), to Man5, to GlcNAc, to nonglycosylated N297Q resulted in progressive increases in backbone flexibility. Comparison of these results with recently published physicochemical stability and Fcγ receptor binding data with the same set of glycoproteins provide improved insights into correlations between glycan structure and these pharmaceutical properties.

View Article and Find Full Text PDF

Antibodies are molecules that exhibit diverse conformational changes on different timescales, and there is ongoing interest to better understand the relationship between antibody conformational dynamics and storage stability. Physical stability data for an IgG4 monoclonal antibody (mAb-D) were gathered through traditional forced degradation (temperature and stirring stresses) and accelerated stability studies, in the presence of different additives and solution conditions, as measured by differential scanning calorimetry, size exclusion chromatography, and microflow imaging. The results were correlated with hydrogen exchange mass spectrometry (HX-MS) data gathered for mAb-D in the same formulations.

View Article and Find Full Text PDF

RiVax is a promising recombinant ricin toxin A subunit (RTA) vaccine antigen that has been shown to be safe and immunogenic in humans and effective at protecting rhesus macaques against lethal-dose aerosolized toxin exposure. We previously used a panel of RTA-specific monoclonal antibodies (MAbs) to demonstrate, by competition enzyme-linked immunosorbent assay (ELISA), that RiVax elicits similar serum antibody profiles in humans and macaques. However, the MAb binding sites on RiVax have yet to be defined.

View Article and Find Full Text PDF

A novel protein adjuvant double-mutant Escherichia coli heat-labile toxin, LT (R192G/L211A) or dmLT, is in preclinical and early clinical development with various vaccine candidates. Structural characterization and formulation development of dmLT will play a key role in its successful process development, scale-up/transfer, and commercial manufacturing. This work describes extensive analytical characterization of structural integrity and physicochemical stability profile of dmLT from a lyophilized clinical formulation.

View Article and Find Full Text PDF

A barrier to the use of hydrogen exchange-mass spectrometry (HX-MS) in many contexts, especially analytical characterization of various protein therapeutic candidates, is that differences in temperature, pH, ionic strength, buffering agent, or other additives can alter chemical exchange rates, making HX data gathered under differing solution conditions difficult to compare. Here, we present data demonstrating that HX chemical exchange rates can be substantially altered not only by the well-established variables of temperature and pH but also by additives including arginine, guanidine, methionine, and thiocyanate. To compensate for these additive effects, we have developed an empirical method to correct the hydrogen-exchange data for these differences.

View Article and Find Full Text PDF

In this report we investigated, within a group of closely related single domain camelid antibodies (V Hs), the relationship between binding affinity and neutralizing activity as it pertains to ricin, a fast-acting toxin and biothreat agent. The V1C7-like V Hs (V1C7, V2B9, V2E8, and V5C1) are similar in amino acid sequence, but differ in their binding affinities and toxin-neutralizing activities. Using the X-ray crystal structure of V1C7 in complex with ricin's enzymatic subunit (RTA) as a template, Rosetta-based homology modeling coupled with energetic decomposition led us to predict that a single pairwise interaction between Arg29 on V5C1 and Glu67 on RTA was responsible for the difference in ricin toxin binding affinity between V1C7, a weak neutralizer, and V5C1, a moderate neutralizer.

View Article and Find Full Text PDF

Liquid chromatographic methods, combined with mass spectrometry, offer exciting and important opportunities to better characterize complex vaccine antigens including recombinant proteins, virus-like particles, inactivated viruses, polysaccharides, and protein-polysaccharide conjugates. The current abilities and limitations of these physicochemical methods to complement traditional in vitro and in vivo vaccine potency assays are explored in this review through the use of illustrative case studies. Various applications of these state-of-the art techniques are illustrated that include the analysis of influenza vaccines (inactivated whole virus and recombinant hemagglutinin), virus-like particle vaccines (human papillomavirus and hepatitis B), and polysaccharide linked to protein carrier vaccines (pneumococcal).

View Article and Find Full Text PDF

Gram-negative pathogens often use conserved type three secretion systems (T3SS) for virulence. The Shigella type three secretion apparatus (T3SA) penetrates the host cell membrane and provides a unidirectional conduit for injection of effectors into host cells. The protein Spa47 localizes to the base of the apparatus and is speculated to be an ATPase that provides the energy for T3SA formation and secretion.

View Article and Find Full Text PDF

The metal-catalyzed oxidation by [Fe(II)(EDTA)](2-)/H2O2 of IgG-1 leads to the site-specific hydrolysis of peptide bonds in the Fc region. The major hydrolytic cleavage occurs between Met428 and His429, consistent with a mechanism reported for the site-specific hydrolysis of parathyroid hormone (1-34) between Met8 and His9 (Mozziconacci, O.; et al.

View Article and Find Full Text PDF

Diarrhea caused by Shigella, Salmonella, and Yersinia is an important public health problem, but development of safe and effective vaccines against such diseases is challenging. A new antigen delivery platform called bacterium-like particles (BLPs) was explored as a means for delivering protective antigens from the type III secretion systems (T3SS) of these pathogens. BLPs are peptidoglycan skeletons derived from Lactococcus lactis that are safe for newborns and can carry multiple antigens.

View Article and Find Full Text PDF

Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets.

View Article and Find Full Text PDF

Shigella spp. are causative agents of bacillary dysentery, a human illness with high global morbidity levels, particularly among elderly and infant populations. Shigella infects via the fecal-oral route, and its virulence is dependent upon a type III secretion system (T3SS).

View Article and Find Full Text PDF

The type III secretion system (T3SS) is an essential virulence factor for Shigella flexneri , providing a conduit through which host-altering effectors are injected directly into a host cell to promote uptake. The type III secretion apparatus (T3SA) is composed of a basal body, external needle, and regulatory tip complex. The nascent needle is a polymer of MxiH capped by a pentamer of invasion plasmid antigen D (IpaD).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: