Publications by authors named "Ronald Spruit"

Time-resolved correlations of the environment, the reaction products, the energy transfer and the material structures during the reaction processes make operando gas and heating TEM more and more attractive in recent years. The time delays existing among parameter measurement locations need to be calibrated for valid correlations. Otherwise, erroneous conclusions would be drawn, such as over/under-estimating the critical temperatures, mismatching the structure and composition relationships to activities, and so on.

View Article and Find Full Text PDF

In situ TEM utilizing windowed gas cells is a promising technique for studying catalytic processes, wherein temperature is one of the most important parameters to be controlled. Current gas cells are only capable of temperature measurement on a global (mm) scale, although the local temperature at the spot of observation (µm to nm scale) may significantly differ. Thus, local temperature fluctuations caused by gas flow and heat dissipation dynamics remain undetected when solely relying on the global device feedback.

View Article and Find Full Text PDF

The temperature-sensitive luminescence of nanoparticles enables their application as remote thermometers. The size of these nanothermometers makes them ideal to map temperatures with a high spatial resolution. However, high spatial resolution mapping of temperatures >373 K has remained challenging.

View Article and Find Full Text PDF

The field of electrochemistry promises solutions for the future energy crisis and environmental deterioration by developing optimized batteries, fuel-cells and catalysts. Combined with in situ transmission electron microscopy (TEM), it can reveal functional and structural changes. A drawback of this relatively young field is lack of reproducibility in controlling the liquid environment while retaining the imaging and analytical capabilities.

View Article and Find Full Text PDF

Any dielectric material under a strain gradient presents flexoelectricity. Here, we synthesized 0.75 sodium bismuth titanate -0.

View Article and Find Full Text PDF

In this work we present our advanced in situ heating sample carrier for transmission electron microscopy (TEM). The TEM is a powerful tool for materials characterization, especially when combined with micro electro-mechanical systems (MEMS). These deliver in situ stimuli such as heating, in which case temperatures up to 1300 °C can be reached with high temporal stability without affecting the original TEM spatial resolution: indeed, atomic resolution imaging can be routinely performed.

View Article and Find Full Text PDF