Publications by authors named "Ronald S Veazey"

Persistence of human immunodeficiency virus (HIV) reservoirs prevents viral eradication, and consequently HIV-infected patients require lifetime treatment with antiretroviral therapy (ART) [1-5]. Currently, there are no effective therapeutics to prevent HIV rebound upon ART cessation. Here we describe an HIV/SIV Rev-dependent lentiviral particle that can be administered to inhibit viral rebound [6-9].

View Article and Find Full Text PDF

Adjuvants and antigen delivery kinetics can profoundly influence B cell responses and should be critically considered in rational vaccine design, particularly for difficult neutralizing antibody targets such as human immunodeficiency virus (HIV). Antigen kinetics can change depending on the delivery method. To promote extended immunogen bioavailability and to present antigen in a multivalent form, native-HIV Env trimers are modified with short phosphoserine peptide linkers that promote tight binding to aluminum hydroxide (pSer:alum).

View Article and Find Full Text PDF

A biologically relevant non-human primate (NHP) model of HIV persistence in the central nervous system (CNS) is necessary. Most current NHP/SIV models of HIV infection fail to recapitulate viral persistence in the CNS without encephalitis or fail to employ viruses that authentically represent the ongoing HIV-1 pandemic. Here, we demonstrate viral replication in the brain and neuropathogenesis after combination antiretroviral therapy (ART) in rhesus macaques (RMs) using novel macrophage-tropic transmitted/founder (TF) simian-human immunodeficiency virus SHIV.

View Article and Find Full Text PDF

The study described herein is a continuation of our work in which we developed a methodology to identify small foci of transduced cells following rectal challenge of rhesus macaques with a non-replicative luciferase reporter virus. In the current study, the wild-type virus was added to the inoculation mix and twelve rhesus macaques were necropsied 2-4 days after the rectal challenge to study the changes in infected cell phenotype as the infection progressed. Relying on luciferase reporter we noted that both anus and rectum tissues are susceptible to the virus as early as 48h after the challenge.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the persistence of germinal centre B cells for over 6 months following HIV Env protein immunization in rhesus monkeys, showing a significant increase in B cells at week 10 compared to conventional methods.
  • Continuous somatic hypermutation of the B cells during the 29-week period indicates ongoing selection pressure, leading to a substantial boost in HIV-neutralizing antibodies after a single booster.
  • Findings suggest that a longer priming strategy can enhance immune memory, allowing B cells to better recognize challenging antigens, potentially improving vaccine efficacy for difficult targets.
View Article and Find Full Text PDF

Early antiretroviral therapy (ART) in HIV-infected infants generally fails to achieve a sustained state of ART-free virologic remission, even after years of treatment. Our studies show that viral reservoir seeding is different in neonatal macaques intravenously exposed to SIV at birth, in contrast to adults. Furthermore, one month of ART including an integrase inhibitor, initiated at day 3, but not day 4 or 5 post infection, efficiently and rapidly suppresses viremia to undetectable levels.

View Article and Find Full Text PDF

Non-human primates (NHP) are widely used for the pre-clinical assessment of antiretrovirals (ARVs) for HIV treatment and prevention. However, the utility of these models is questionable given the differences in ARV pharmacology between humans and macaques. Here, we report a model based on ARV exposure and the challenge of mucosal tissue explants to define pharmacological differences between NHPs and humans.

View Article and Find Full Text PDF

The systemic nature of SARS-CoV-2 infection is highly recognized, but poorly characterized. A non-invasive and unbiased method is needed to clarify whole body spatiotemporal dynamics of SARS-CoV-2 infection after transmission. We recently developed a probe based on the anti-SARS-CoV-2 spike antibody CR3022 to study SARS-CoV-2 pathogenesis .

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a novel probe using the anti-SARS-CoV-2 antibody CR3022 to study the dynamics of SARS-CoV-2 infection in rhesus macaques through non-invasive PET imaging.
  • The study tracked the probe's activity in the respiratory tract and identified infection sites, including significant findings in the male genital tract (MGT) and differences in lung pathology between different virus strains.
  • The research highlights the effectiveness of immunoPET in understanding SARS-CoV-2's pathogenicity and uncovering potential new sites for viral replication in the body.
View Article and Find Full Text PDF

Infection with the novel coronavirus, SARS-CoV-2, results in pneumonia and other respiratory symptoms as well as pathologies at diverse anatomical sites. An outstanding question is whether these diverse pathologies are due to replication of the virus in these anatomical compartments and how and when the virus reaches those sites. To answer these outstanding questions and study the spatiotemporal dynamics of SARS-CoV-2 infection a method for tracking viral spread is needed.

View Article and Find Full Text PDF

The HIV reservoir size in target CD4+ T cells during primary infection remains unknown. Here, we sorted peripheral and intestinal CD4+ T cells and quantified the levels of cell-associated SIV RNA and DNA in rhesus macaques within days of SIVmac251 inoculation. As a major target cell of HIV/SIV, CD4+ T cells in both tissues contained a large amount of SIV RNA and DNA at day 8-13 post-SIV infection, in which productive SIV RNA highly correlated with the levels of cell-associated SIV DNA.

View Article and Find Full Text PDF

Understanding the earliest events of human immunodeficiency virus (HIV) sexual transmission is critical to developing and optimizing HIV prevention strategies. To gain insights into the earliest steps of HIV rectal transmission, including cellular targets, rhesus macaques were intrarectally challenged with a single-round simian immunodeficiency virus (SIV)-based dual reporter that expresses luciferase and near-infrared fluorescent protein 670 (iRFP670) upon productive transduction. The vector was pseudotyped with the HIV-1 envelope JRFL.

View Article and Find Full Text PDF

Host metabolism has recently gained more attention for its roles in physiological functions and pathologic conditions. Of these, metabolic tryptophan disorders generate a pattern of abnormal metabolites that are implicated in various diseases. Here, we briefly highlight the recent advances regarding abnormal tryptophan metabolism in HIV and infection and discuss its potential impact on immune regulation, disease progression, and neurological disorders.

View Article and Find Full Text PDF

i.v. injected Abs have demonstrated protection against simian HIV infection in rhesus macaques, paving the way for the Antibody Mediated Prevention trial in which at-risk individuals for HIV received an i.

View Article and Find Full Text PDF

The ability to successfully develop a safe and effective vaccine for the prevention of HIV infection has proven challenging. Consequently, alternative approaches to HIV infection prevention have been pursued, and there have been a number of successes with differing levels of efficacy. At present, only two oral preexposure prophylaxis (PrEP) products are available, Truvada and Descovy.

View Article and Find Full Text PDF

Tuberculosis (TB) is an increasing global emergency in human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) patients, in which host immunity is dysregulated and compromised. However, the pathogenesis and efficacy of therapeutic strategies in HIV-associated TB in developing infants are essentially lacking. Bacillus Calmette-Guerin vaccine, an attenuated live strain of Mycobacterium bovis, is not adequately effective, which confers partial protection against Mycobacterium tuberculosis (Mtb) in infants when administered at birth.

View Article and Find Full Text PDF

HIV-associated inflammation has been implicated in the premature aging and increased risk of age-associated comorbidities in cART-treated individuals. However, the immune mechanisms underlying the chronic inflammatory state of cART-suppressed HIV infection remain unclear. Here, we investigated the role of γδT cells, a group of innate IL-17 producing T lymphocytes, in the development of systemic inflammation and leaky gut phenotype during cART-suppressed SIV infection of macaques.

View Article and Find Full Text PDF

Chimeric simian/human immunodeficiency viruses (SHIVs) are widely used in nonhuman primate models to recapitulate human immunodeficiency virus (HIV) infection in humans, yet most SHIVs fail to establish persistent viral infection. We investigated immunological and virological events in rhesus macaques infected with the newly developed SHIV.C.

View Article and Find Full Text PDF

Cellular viral reservoirs are rapidly established in tissues upon HIV-1/SIV infection, which persist throughout viral infection, even under long-term antiretroviral therapy (ART). Specific integrins are involved in the homing of cells to gut-associated lymphoid tissues (GALT) and inflamed tissues, which may promote the seeding and dissemination of HIV-1/SIV to these tissue sites. In this study, we investigated the efficacy of prophylactic integrin blockade (α4β7 antibody or α4β7/α4β1 dual antagonist TR-14035) on viral infection, as well as dissemination and seeding of viral reservoirs in systemic and lymphoid compartments post-SIV inoculation.

View Article and Find Full Text PDF

The human immunodeficiency virus (HIV) reservoir is responsible for persistent viral infection, and a small number of mosaic latent cellular reservoirs promote viral rebound upon antiretroviral therapy interruption, which is the major obstacle to a cure. However, markers that determine effective therapy and viral rebound posttreatment interruption remain unclear. In this study, we comprehensively and longitudinally tracked dynamic decay of cell-associated viral RNA/DNA in systemic and lymphoid tissues in simian immunodeficiency virus (SIV)-infected rhesus macaques on prolonged combined antiretroviral therapy (cART) and evaluated predictors of viral rebound after treatment cessation.

View Article and Find Full Text PDF

We compare immunogenicity and protective efficacy of an HIV vaccine comprised of env and gag DNA and Env (Envelope) proteins by co-administration of the vaccine components in the same muscles or by separate administration of DNA + protein in contralateral sites in female rhesus macaques. The 6-valent vaccine includes gp145 Env DNAs, representing six sequentially isolated Envs from the HIV-infected individual CH505, and matching GLA-SE-adjuvanted gp120 Env proteins. Interestingly, only macaques in the co-administration vaccine group are protected against SHIV CH505 acquisition after repeated low-dose intravaginal challenge and show 67% risk reduction per exposure.

View Article and Find Full Text PDF

Eradication of human immunodeficiency virus 1 (HIV-1) from an infected individual cannot be achieved using current antiretroviral therapy (ART) regimens. Viral reservoirs established in early infection remain unaffected by ART and are able to replenish systemic infection upon treatment interruption. Simian immunodeficiency virus (SIV) infected macaque models are useful for studying HIV pathogenesis, treatments, and persistent viral reservoirs.

View Article and Find Full Text PDF