Publications by authors named "Ronald S Harwerth"

Purpose: Infantile strabismus impedes the development of stereopsis. In optically strabismic monkeys, 2 continuous hours of normal binocular vision per day has been shown to preserve near-normal stereopsis. In this study, we investigated whether, as in learning, multiple shorter periods of intervention would further boost performance.

View Article and Find Full Text PDF

Optic nerve head (ONH) neuroretinal rim thickness, quantified as minimum rim width (BMO-MRW), is a sensitive measure for assessing early glaucomatous disease. The BMO-MRW is sensitive to transient fluctuations in intraocular pressure (IOP), but the time course over which BMO-MRW decreases and recovers with changes in IOP remains unknown. The goal of this study was to investigate the dynamics of BMO-MRW changes over 2-h periods of mild or moderate IOP elevation, and subsequent recovery, in healthy non-human primate eyes.

View Article and Find Full Text PDF

Changes in the foveal anatomy during infancy are an important component in early development of spatial vision. The present longitudinal study in rhesus monkeys was undertaken to characterize the postnatal maturation of the fovea. Starting at four weeks after birth, the retinas of the left eyes of sixteen infant monkeys were imaged using spectral domain optical coherence tomography (SD OCT).

View Article and Find Full Text PDF

We investigated the potential causal relationships between anisometropia, amblyopia and strabismus, specifically to determine whether either amblyopia or strabismus interfered with emmetropization. We analyzed data from non-human primates that were relevant to the co-existence of anisometropia, amblyopia and strabismus in children. We relied on interocular comparisons of spatial vision and refractive development in animals reared with 1) monocular form deprivation; 2) anisometropia optically imposed by either contact lenses or spectacle lenses; 3) organic amblyopia produced by laser ablation of the fovea; and 4) strabismus that was either optically imposed with prisms or produced by either surgical or pharmacological manipulation of the extraocular muscles.

View Article and Find Full Text PDF

The lamina cribrosa likely plays an important role in retinal ganglion cell axon injury in glaucoma. We sought to (1) better understand optic nerve head (ONH) structure and anterior lamina cribrosa surface (ALCS) microarchitecture between fellow eyes of living, normal non-human primates and (2) characterize the time-course of in vivo structural changes in the ONH, ALCS microarchitecture, and retinal nerve fiber layer thickness (RNFLT) in non-human primate eyes with early experimental glaucoma (EG). Spectral domain optical coherence tomography (SDOCT) images of the ONH were acquired cross-sectionally in six bilaterally normal rhesus monkeys, and before and approximately every two weeks after inducing unilateral EG in seven rhesus monkeys.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to determine the relationship between optical coherence tomography (OCT) measures of retinal nerve fiber layer (RNFL) and neuroretinal rim (NRR) in a nonhuman primate experimental glaucoma model, and in a population of clinical patients.

Methods: For nonhuman primates, normative data were collected from 44 healthy monkeys, and nine animals with unilateral experimental glaucoma that were followed longitudinally. Cross-sectional human subjects data were collected from 89 healthy, 74 glaucoma suspects, and 104 glaucoma patients.

View Article and Find Full Text PDF

Purpose: Optical coherence tomography (OCT) measures of the retinal nerve fiber layer (RNFL) thickness and neuroretinal rim (NRR) parameters are often used as a surrogate for retinal ganglion cell content. The purpose of this study was to investigate the relationship between these morphological measures and the aging effects on these structures.

Methods: One hundred thirteen healthy individuals, aged 19 to 76 years, with no prior history of retinal of optic nerve head pathology were recruited.

View Article and Find Full Text PDF

Purpose: We investigated relations between macular retinal ganglion cell plus inner plexiform layer (RGC+IPL) thickness and macular retinal function revealed by multifocal electroretinonography (mfERG) in a nonhuman primate model of experimental glaucoma.

Methods: Retinal ganglion cell (RGC) structure and function were followed with spectral-domain optical coherence tomography (SD-OCT) and ERGs in five macaques with unilateral experimental glaucoma. Linear regression was used to study correlations in control (Con) and experimental (Exp) eyes between peripapillary retinal nerve fiber layer (RNFL) thickness, macular RGC+IPL thickness, multifocal photopic negative response (mfPhNR) and high-frequency multifocal oscillatory potentials (mfOP) in slow-sequence mfERG, and low-frequency component (mfLFC) in global-flash mfERG.

View Article and Find Full Text PDF

Purpose: To present and evaluate a new method of estimating rates of retinal ganglion cell (RGC) loss in glaucoma by combining structural and functional measurements.

Design: Observational cohort study.

Methods: The study included 213 eyes of 213 glaucoma patients followed up for an average of 4.

View Article and Find Full Text PDF

Purpose: Retinal nerve fiber layer (RNFL) thickness measures with spectral domain-optical coherence tomography (SD-OCT) provide important information on the health of the optic nerve. As with most retinal imaging technologies, ocular magnification characteristics of the eye must be considered for accurate analysis. While effects of axial length have been reported, the effects of anterior segment optical power on RNFL thickness measures have not been described fully to our knowledge.

View Article and Find Full Text PDF

Purpose: To better understand the functional significance of refractive-error measures obtained using common objective methods in laboratory animals, we compared objective and subjective measures of refractive error in adolescent rhesus monkeys.

Methods: The subjects were 20 adolescent monkeys. Spherical-equivalent spectacle-plane refractive corrections were measured by retinoscopy and autorefraction while the animals were cyclopleged and anesthetized.

View Article and Find Full Text PDF

Purpose: An assessment of the retinal nerve fiber layer (RNFL) provides important information on the health of the optic nerve. There are several non-invasive technologies, including spectral domain optical coherence tomography (SD OCT), that can be used for in vivo imaging and quantification of the RNFL, but often there is disagreement in RNFL thickness between clinical instruments. The purpose of this study was to investigate the influence of scan centration, ocular magnification, and segmentation on the degree of agreement of RNFL thickness measures by two SD OCT instruments.

View Article and Find Full Text PDF

Purpose: Providing brief daily periods of unrestricted vision during early monocular form deprivation reduces the depth of amblyopia. To gain insights into the neural basis of the beneficial effects of this treatment, the binocular and monocular response properties of neurons were quantitatively analyzed in visual area 2 (V2) of form-deprived macaque monkeys.

Methods: Beginning at 3 weeks of age, infant monkeys were deprived of clear vision in one eye for 12 hours every day until 21 weeks of age.

View Article and Find Full Text PDF

Purpose: The ability to consistently resolve lamina cribrosa pores in vivo has applications in the study of optic nerve head and retinal disease mechanisms. Repeatability was assessed in imaging laminar pores in normal living eyes with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO).

Methods: Reflectance images (840 nm) of the anterior lamina cribrosa were acquired using the AOSLO in four or more different sessions in two normal rhesus monkey eyes and three normal human eyes.

View Article and Find Full Text PDF

Purpose: To study relationships between glaucoma-sensitive components identified with frequency-domain analysis of global-flash multifocal electroretinogram (mfERG), regional retinal nerve fiber layer thickness (RNFLT), and local visual field sensitivity (VS).

Methods: Eleven macaque monkeys, including four controls and seven with unilateral laser-induced trabecular meshwork scarification and ocular hypertension, were observed with optical coherence tomography (OCT), full-field light-adapted flash ERG, 103-hexagon global-flash mfERG (MFOFO), and static perimetry. The effects of experimental glaucoma on mfERG were assessed in the frequency domain.

View Article and Find Full Text PDF

Purpose: This study examines whether brief periods of binocular vision could preserve stereopsis in monkeys reared with optical strabismus.

Methods: Starting at 4 weeks of age, six infant monkeys were reared with a total of 30 prism diopters base-in split between the eyes. Two of the six monkeys wore prisms continuously, one for 4 weeks and one for 6 weeks.

View Article and Find Full Text PDF

Purpose: To determine whether a structure-function model developed for normal age-related losses of retinal ganglion cells also models the retinal ganglion cell losses in glaucomatous optic neuropathy.

Methods: The model to relate age-related loss of retinal nerve fiber layer thickness and reduced sensitivity for standard automated perimetry was evaluated with data from 30 glaucoma patients and 40 normal individuals. Perimetry thresholds were translated into separate retinal ganglion cell body estimates for test locations in the superior and inferior visual fields.

View Article and Find Full Text PDF

Purpose: An evaluation of the retinal nerve fiber layer (RNFL) provides important information on the health of the optic nerve. Standard measurements of the RNFL consider only thickness, but an accurate assessment should also consider axial length, size of the optic nerve head (ONH), blood vessel contribution, and distance of the scan from the ONH margin. In addition, although most primate ONHs are elliptical, the circular scan centered on the ONH is the mainstay in both clinical and research analyses.

View Article and Find Full Text PDF

Purpose: To establish the identity of a prominent protein, approximately 70 kDa, that is markedly increased in the retina of monkeys with experimental glaucoma compared with the fellow control retina, the relationship to glaucoma severity, and its localization in the retina.

Methods: Retinal extracts were subjected to 2-D gel electrophoresis to identify differentially expressed proteins. Purified peptides from the abundant 70 kDa protein were analyzed and identified by liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) separation, and collision-induced dissociation sequencing.

View Article and Find Full Text PDF

Purpose: Age-related losses in retinal nerve fiber layer (RNFL) thickness have been assumed to be the result of an age-dependent reduction of retinal ganglion cells (RGCs), but the published rates differ: age-related losses of RGCs of approximately 0.6%/year compared to 0.2%/year for thinning of the RNFL.

View Article and Find Full Text PDF

The glaucomas are a group of potentially blinding optic neuropathies that are characterized by progressive pathological losses of the retinal ganglion cells (RGCs) and their axons that form the optic nerve. The causes are unknown and, therefore, the diagnosis and assessment of progression of disease depends on ophthalmic testing to identify and quantify clinical characteristics of glaucomatous neuropathy, such as the pattern of visual field defects and/or thinning of the retinal nerve fiber layer. To relate these clinical measurements to the basic pathology of glaucoma, a neuron doctrine for glaucoma has been proposed to correlate data from standard tests (standard automated perimetry and optical coherence tomography) to the loss of RGCs.

View Article and Find Full Text PDF

Purpose: Decreasing the interocular correlation in random dot stereograms elevates disparity detection thresholds. Whether decorrelation also affects perceived depth from suprathreshold disparity magnitudes is unknown. The present study investigated the effects of interocular correlation and contrast on the magnitude of perceived depth in suprathreshold random dot stereograms.

View Article and Find Full Text PDF

Purpose: The effects of aging on retinal nerve fiber layer (RNFL) thickness should reflect the age-related losses in retinal ganglion cells (RGCs), but published data suggest that the relative rate of thinning of RNFL thickness with age is less than predicted by age-related losses of RGCs. Therefore, the present study was undertaken to reconcile the differences in age-dependency on measures of RGCs and axons that are incorporated in normative clinical data.

Methods: Normative data for RNFL thickness and visual field sensitivities were obtained from the printouts of standard optical coherence tomography (OCT) and standard automated perimetry (SAP) for patients aged between 25 and 95 years, in decade steps.

View Article and Find Full Text PDF

Perceptual learning is a training induced improvement in performance. Mechanisms underlying the perceptual learning of depth discrimination in dynamic random dot stereograms were examined by assessing stereothresholds as a function of decorrelation. The inflection point of the decorrelation function was defined as the level of decorrelation corresponding to 1.

View Article and Find Full Text PDF