Nanoporous zeolitic imidazolate frameworks (ZIFs) form structural topologies equivalent to zeolites. ZIFs containing only one type of imidazole linker show separation capability for limited molecular pairs. We show that the effective pore size, hydrophilicity, and organophilicity of ZIFs can be continuously and drastically tuned using mixed-linker ZIFs containing two types of linkers, allowing their use as a more general molecular separation platform.
View Article and Find Full Text PDFAlcohol (methanol, ethanol, 1-propanol, 2-propanol and 1-butanol) and water vapor adsorption in zeolitic imidazolate frameworks (ZIF-8, ZIF-71 and ZIF-90) with similar crystal sizes was systematically studied. The feasibility of applying these ZIF materials to the recovery of bio-alcohols is evaluated by estimating the vapor-phase alcohol-water sorption selectivity.
View Article and Find Full Text PDFWater and ethanol vapor adsorption phenomena are investigated systematically on a series of MFI-type zeolites: silicalite-1 samples synthesized via both alkaline (OH(-)) and fluoride (F(-)) routes, and ZSM-5 samples with different Si/Al ratios as well as different charge-balancing cations. Full isotherms (0.05-0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2011
We present here the creation of a defect-free polyvinylidene chloride barrier layer on the lumen-side of a hollow fiber sorbent. Hollow fiber sorbents have previously been shown to be promising materials for enabling low-cost CO(2) capture, provided a defect-free lumen-side barrier layer can be created. Film experiments examined the effect of drying rate, latex age, substrate porosity (porous vs nonporous), and substrate hydrophobicity/hydrophilicity.
View Article and Find Full Text PDFA room temperature method for synthesizing zeolitic imidizolate framework 71 (ZIF-71) is described. The methanol-based synthesis results in >95% yields (based on Zn) and produces crystals with 70% greater surface area than reported earlier. Ethanol uptake into the ZIF compares favorably with a recent modeling-based study.
View Article and Find Full Text PDFEthanol can be produced via an intracellular photosynthetic process in cyanobacteria (blue-green algae), excreted through the cell walls, collected from closed photobioreactors as a dilute ethanol-in-water solution, and purified to fuel grade ethanol. This sequence forms the basis for a biofuel production process that is currently being examined for its commercial potential. In this paper, we calculate the life cycle energy and greenhouse gas emissions for three different system scenarios for this proposed ethanol production process, using process simulations and thermodynamic calculations.
View Article and Find Full Text PDFThe optoelectronic properties of polydiacetylenes can be strongly modulated by torsions along the polymer chains. These as well as other distortions of the nominally coplanar polydiacetylene backbones result in the major color changes observed for these materials in response to a variety of external, low-energy stimuli; such color changes form the basis for the many applications of polydiacetylenes as sensor materials. There has been little theoretical work related to backbone distortions in polydiacetylenes; actually, previous estimates of the torsional barriers in these systems differ by an order of magnitude.
View Article and Find Full Text PDF