Publications by authors named "Ronald Pierson"

Huntington's Disease-Like 2 (HDL2), caused by a CTG/CAG expansion in JPH3 on chromosome 16q24, is the most common Huntington's Disease (HD) phenocopy in populations with African ancestry. Qualitatively, brain MRIs of HDL2 patients have been indistinguishable from HD. To determine brain regions most affected in HDL2 a cross-sectional study using MRI brain volumetry was undertaken to compare the brains of nine HDL2, 11 HD and nine age matched control participants.

View Article and Find Full Text PDF

Introduction: Type 2 diabetes mellitus is associated with global and hippocampal atrophy and cognitive deficits, and some studies suggest that the right hippocampus may display greater vulnerability than the left.

Methods: Hippocampal volumes, the hippocampal asymmetry index, and cognitive functioning were assessed in 120 nondemented adults with long duration type 2 diabetes.

Results: The majority of the sample displayed left greater than right hippocampal asymmetry (which is the reverse of the expected direction seen with normal aging).

View Article and Find Full Text PDF

This study aimed to examine global and regional cerebral blood flow and amyloid burden in combat veterans with and without traumatic brain injury (TBI). Cerebral blood flow (in milliliters per minute per 100 mL) was measured by quantitative [(15)O]water, and amyloid burden was measured by [(11)C]PIB imaging. Mean global cerebral blood flow was significantly lower in veterans with TBI compared with non-TBI veterans.

View Article and Find Full Text PDF

Structural MRI is widely used for investigating brain atrophy in many neurodegenerative disorders, with several research groups developing and publishing techniques to provide quantitative assessments of this longitudinal change. Often techniques are compared through computation of required sample size estimates for future clinical trials. However interpretation of such comparisons is rendered complex because, despite using the same publicly available cohorts, the various techniques have been assessed with different data exclusions and different statistical analysis models.

View Article and Find Full Text PDF

Transcranial electrical stimulation (TCES) is effective in treating many conditions, but it has not been possible to accurately forecast current density within the complex anatomy of a given subject's head. We sought to predict and verify TCES current densities and determine the variability of these current distributions in patient-specific models based on magnetic resonance imaging (MRI) data. Two experiments were performed.

View Article and Find Full Text PDF

Objective: It has been estimated that 10%-20% of U.S. veterans of the wars in Iraq and Afghanistan experienced mild traumatic brain injury (TBI), mostly secondary to blast exposure.

View Article and Find Full Text PDF

Objective: Wernicke encephalopathy and Korsakoff syndrome (the combined disorder is named Wernicke-Korsakoff syndrome [WKS]) are preventable, life-threatening neuropsychiatric syndromes resulting from thiamine deficiency. WKS has historically been associated with alcoholism; more recently, it has been recognized in patients who have anorexia nervosa or have undergone bariatric surgery for obesity. However, patients with nutritional deficiencies of any origin are at risk for WKS.

View Article and Find Full Text PDF

Background: Previous neuroimaging research indicates that brain atrophy in Huntington disease (HD) begins many years before movement abnormalities become severe enough to warrant diagnosis. Most clinical trials being planned for individuals in the prediagnostic stage of HD propose to use delay of disease onset as the primary outcome measure. Although formulas have been developed based on age and CAG repeat length, to predict when HD motor onset will occur, it would be useful to have additional measures that can improve the accuracy of prediction of disease onset.

View Article and Find Full Text PDF

Background: Schizophrenia has a characteristic onset during adolescence or young adulthood but also tends to persist throughout life. Structural magnetic resonance studies indicate that brain abnormalities are present at onset, but longitudinal studies to assess neuroprogression have been limited by small samples and short or infrequent follow-up intervals.

Methods: The Iowa Longitudinal Study is a prospective study of 542 first-episode patients who have been followed up to 18 years.

View Article and Find Full Text PDF

Background: Longer CAG repeat length is associated with faster clinical progression in Huntington disease, although the effect of higher repeat length on brain atrophy is not well documented.

Method: Striatal volumes were obtained from MRI scans of 720 individuals with prodromal Huntington disease. Striatal volume was plotted against age separately for groups with CAG repeat lengths of 38-39, 40, 41, 42, 43, 44, 45, 46, and 47-54.

View Article and Find Full Text PDF

Context: Progressive brain volume changes in schizophrenia are thought to be due principally to the disease. However, recent animal studies indicate that antipsychotics, the mainstay of treatment for schizophrenia patients, may also contribute to brain tissue volume decrement. Because antipsychotics are prescribed for long periods for schizophrenia patients and have increasingly widespread use in other psychiatric disorders, it is imperative to determine their long-term effects on the human brain.

View Article and Find Full Text PDF

Purpose: Research indicates that patients with chronic temporal lobe epilepsy (TLE) exhibit cerebellar atrophy compared to healthy controls, but the degree to which specific regions of the cerebellum are affected remains unclear. The purpose of this study was to characterize the extent and lateralization of atrophy in individual cerebellar lobes and subregions in unilateral TLE using advanced quantitative magnetic resonance imaging (MRI) techniques.

Methods: Study participants were 46 persons with TLE and 31 age- and gender- matched healthy controls.

View Article and Find Full Text PDF
Article Synopsis
  • * A study involving 707 participants who had gene testing found that males with prodromal Huntington's disease exhibited a 4% smaller intracranial volume compared to non-gene expanded controls, suggesting developmental issues linked to the disease.
  • * The findings indicate that the mutant huntingtin protein may lead to abnormal brain development, potentially playing a role in the disease's progression, particularly in males.
View Article and Find Full Text PDF

Objective: As therapeutics are being developed to target the underlying neuropathology of Huntington disease, interest is increasing in methodologies for conducting clinical trials in the prodromal phase. This study was designed to examine the potential utility of structural MRI measures as outcome measures for such trials.

Methods: Data are presented from 211 prodromal individuals and 60 controls, scanned both at baseline and at the 2-year follow-up.

View Article and Find Full Text PDF

Neuroimaging studies of subjects who are gene-expanded for Huntington Disease, but not yet diagnosed (termed prodromal HD), report that the cortex is "spared," despite the decrement in striatal and cerebral white-matter volume. Measurement of whole-cortex volume can mask more subtle, but potentially clinically relevant regional changes in volume, thinning, or surface area. The current study addressed this limitation by evaluating cortical morphology of 523 prodromal HD subjects.

View Article and Find Full Text PDF

The BRAINS (Brain Research: Analysis of Images, Networks, and Systems) image analysis software has been in use, and in constant development, for over 20 years. The original neuroimage analysis pipeline using BRAINS was designed as a semiautomated procedure to measure volumes of the cerebral lobes and subcortical structures, requiring manual intervention at several stages in the process. Through use of advanced image processing algorithms the need for manual intervention at stages of image realignment, tissue sampling, and mask editing have been eliminated.

View Article and Find Full Text PDF

Previous MRI studies with participants prior to manifest Huntington disease have been conducted in small single-site samples. The current study reports data from a systematic multi-national study during the prodromal period of Huntington disease and examines whether various brain structures make unique predictions about the proximity to manifest disease. MRI scans were acquired from 657 participants enrolled at 1 of 32 PREDICT-HD research sites.

View Article and Find Full Text PDF

In addition to its well-established role in balance, coordination, and other motor skills, the cerebellum is increasingly recognized as a prominent contributor to a wide array of cognitive and emotional functions. Many of these capacities undergo dramatic changes during childhood and adolescence. However, accurate characterization of co-occurring anatomical changes has been hindered by lack of longitudinal data and methodologic challenges in quantifying subdivisions of the cerebellum.

View Article and Find Full Text PDF

Background: The cerebellum is a brain region recognized primarily in the coordination of movement and related accessory motor functions. In addition, emerging evidence implicates the cerebellum in cognitive processes and suggests that this brain region might be subject to experience-dependent changes in structure. Therefore, the aim of this study was to evaluate the role of early environmental deprivation in the maturation of the cerebellum and aspects of cognitive development.

View Article and Find Full Text PDF

Single task analysis methods of functional MRI brain data, though useful, are not able to evaluate the joint information between tasks. Data fusion of multiple tasks that probe different cognitive processes provides knowledge of the joint information and may be important in order to better understand complex disorders such as schizophrenia. In this article, we introduce a simple but effective technique to fuse two tasks by computing the histogram of correlations for all possible combinations of whole brain voxels.

View Article and Find Full Text PDF

For many years the cerebellum has been considered to serve as a coordinator of motor function. Likewise, for many years schizophrenia has been considered to be a disease that primarily affects the cerebrum. This review summarizes recent evidence that both these views must be revised in the light of emerging evidence about cerebellar function and the mechanisms of schizophrenia.

View Article and Find Full Text PDF

Twenty-seven schizophrenia spectrum patients and 25 healthy controls performed a probabilistic version of the serial reaction time task (SRT) that included sequence trials embedded within random trials. Patients showed diminished, yet measurable, sequence learning. Postexperimental analyses revealed that a group of patients performed above chance when generating short spans of the sequence.

View Article and Find Full Text PDF

The large amount of imaging data collected in several ongoing multi-center studies requires automated methods to delineate brain structures of interest. We have previously reported on using artificial neural networks (ANN) to define subcortical brain structures. Here we present several automated segmentation methods using multidimensional registration.

View Article and Find Full Text PDF

While the role of the cerebellum in motor coordination is widely accepted, the notion that it is involved in emotion has only recently gained popularity. To date, functional neuroimaging has not been used in combination with lesion studies to elucidate the role of the cerebellum in the processing of emotional material. We examined six participants with cerebellar stroke and nine age and education matched healthy volunteers.

View Article and Find Full Text PDF

Previous structural and functional imaging studies suggest that the corticocerebellar-thalamic-cortical circuit is dysfunctional in schizophrenia. Accurate identification and volumetric measurement of cerebellar subregions are essential to the assessment of the cerebellum's role in healthy and disease states. Manual parcellation of the cerebellum on MR images was performed with the use of guide traces.

View Article and Find Full Text PDF