Publications by authors named "Ronald Pethig"

Dielectrophoresis (DEP) is a fast and reliable nanoparticle recovery method that utilizes nonuniform electric fields to manipulate particles based on their material composition and size, enabling recovery of biologically-derived nanoparticles from plasma for diagnostic applications. When applying DEP to undiluted human plasma, collection of endogenous albumin proteins was observed at electric field gradients much lower than predicted by theory to collect molecular proteins. To understand this collection, nanoparticle tracking analysis of bovine serum albumin (BSA) dissolved in 0.

View Article and Find Full Text PDF

Dielectrophoresis (DEP) represents an electrokinetic approach for discriminating and separating suspended cells based on their intrinsic dielectric characteristics without the need for labeling procedure. A good practice, beyond the physical and engineering components, is the selection of a buffer that does not hinder cellular and biochemical parameters as well as cell recovery. In the present work the impact of four buffers on biochemical, morphological, and mechanical parameters was evaluated in two different cancer cell lines (Caco-2 and K562).

View Article and Find Full Text PDF

Standard DEP theory, based on the Clausius-Mossotti (CM) factor derived from solving the boundary-value problem of macroscopic electrostatics, fails to describe the dielectrophoresis (DEP) data obtained for 22 different globular proteins over the past three decades. The calculated DEP force appears far too small to overcome the dispersive forces associated with Brownian motion. An empirical theory, employing the equivalent of a molecular version of the macroscopic CM-factor, predicts a protein's DEP response from the magnitude of the dielectric -dispersion produced by its relaxing permanent dipole moment.

View Article and Find Full Text PDF

Globular proteins exhibit dielectrophoresis (DEP) responses in experiments where the applied field gradient factor ∇E appears far too small, according to standard DEP theory, to overcome dispersive forces associated with the thermal energy kT of disorder. To address this a DEP force equation is proposed that replaces a previous empirical relationship between the macroscopic and microscopic forms of the Clausius-Mossotti factor. This equation relates the DEP response of a protein directly to the dielectric increment δε and decrement δε that characterize its β-dispersion at radio frequencies, and also indirectly to its intrinsic dipole moment by way of providing a measure of the protein's effective volume.

View Article and Find Full Text PDF

The dielectrophoresis (DEP) data reported in the literature since 1994 for 22 different globular proteins is examined in detail. Apart from three cases, all of the reported protein DEP experiments employed a gradient field factor ∇Em2 that is much smaller (in some instances by many orders of magnitude) than the ~4 10 V/m required, according to current DEP theory, to overcome the dispersive forces associated with Brownian motion. This failing results from the macroscopic Clausius-Mossotti () factor being restricted to the range 1.

View Article and Find Full Text PDF

This special collection of serves as a Festschrift to honor Professor Hsueh-Chia Chang, Bayer Professor at the Department of Chemical and Biomolecular Engineering, University of Notre Dame. We acknowledge not only his role as Chief and Founding Editor of (from 2006 through 2018) but also his seminal contributions as a researcher in micro/nanofluidics, particularly in the area of nanoelectrokinetics. This research has also been recognized by the 2018 Lifetime Achievement Award of the AES Electrophoresis Society to him.

View Article and Find Full Text PDF

Dielectrophoresis (DEP) studies have progressed from the microscopic scale of cells and bacteria, through the mesoscale of virions to the molecular scale of DNA and proteins. The Clausius-Mossotti function, based on macroscopic electrostatics, is invariably employed in the analyses of all these studies. The limitations of this practice are explored, with the conclusion that it should be abandoned for the DEP study of proteins and modified for native DNA.

View Article and Find Full Text PDF

Dielectrophoresis (DEP) has been widely studied for its potential as a biomarker-free method of sorting and characterizing cells based upon their dielectric properties. Most studies have employed voltage signals from ∼1 kHz to no higher than ∼30 MHz. Within this range a transition from negative to positive DEP can be observed at the cross-over frequency f .

View Article and Find Full Text PDF

Current approaches to molecular diagnostics rely heavily on PCR amplification and optical detection methods which have restrictions when applied to point of care (POC) applications. Herein we describe the development of a label-free and amplification-free method of pathogen detection applied to Escherichia coli which overcomes the bottleneck of complex sample preparation and has the potential to be implemented as a rapid, cost effective test suitable for point of care use. Ribosomal RNA is naturally amplified in bacterial cells, which makes it a promising target for sensitive detection without the necessity for prior in vitro amplification.

View Article and Find Full Text PDF

Dielectrophoresis (DEP) is an electrokinetic technique with proven ability to discriminate and selectively manipulate cells based on their phenotype and physiological state, without the need for biological tags and markers. The DEP response of a cell is predominantly determined by the physico-chemical properties of the plasma membrane, subtle changes of which can be detected from two so-called 'cross-over' frequencies, f(xo1) and f(xo2). Membrane capacitance and structural changes can be monitored by measurement of f(xo1) at sub-megahertz frequencies, and current indications suggest that f(xo2), located above 100 MHz, is sensitive to changes of trans-membrane ion fluxes.

View Article and Find Full Text PDF

Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model.

View Article and Find Full Text PDF

Isolation and enumeration of circulating tumor cells (CTCs) are used to monitor metastatic disease progression and guide cancer therapy. However, currently available technologies are limited to cells expressing specific cell surface markers, such as epithelial cell adhesion molecule (EpCAM) or have limited specificity because they are based on cell size alone. We developed a device, ApoStream(™) that overcomes these limitations by exploiting differences in the biophysical characteristics between cancer cells and normal, healthy blood cells to capture CTCs using dielectrophoretic technology in a microfluidic flow chamber.

View Article and Find Full Text PDF

A modified theory is proposed for extracting cell dielectric properties from the peak frequency measurement of electrorotation (ER) and the crossover frequency measurement of dielectrophoresis (DEP). Current theory in the literature is based on the low frequency (DC) approximations for the equivalent cell permittivity and conductivity, which are valid when the measurements are performed in a medium with conductivity less than 1 mS/m. The present theory extracts the cell properties through optimizing an expression for the medium conductivity in terms of the peak ER, or DEP crossover, frequency according to its definition using full expressions of equivalent cell permittivity and conductivity.

View Article and Find Full Text PDF

Using electrochemical impedance spectroscopy (EIS) the sensitive and specific detection of the antibiotic resistance gene mecA has been demonstrated. The gene sequence was obtained from clinical Staphylococcus aureus isolates. Initially a mecA specific probe was selected from hybridisation tests with a 3' and 5' version of a previously published probe sequence.

View Article and Find Full Text PDF

The selection, isolation, and accurate positioning of single cells in three dimensions are increasingly desirable in many areas of cell biology and tissue engineering. We describe the application of a simple and low cost dielectrophoretic device for picking out and relocating single target cells. The device consists of a single metal electrode and an AC signal generator.

View Article and Find Full Text PDF

Assessment of the dielectrophoresis (DEP) cross-over frequency (f xo), cell diameter, and derivative membrane capacitance (C m) values for a group of undifferentiated human embryonic stem cell (hESC) lines (H1, H9, RCM1, RH1), and for a transgenic subclone of H1 (T8) revealed that hESC lines could not be discriminated on their mean f xo and C m values, the latter of which ranged from 14 to 20 mF/m(2). Differentiation of H1 and H9 to a mesenchymal stem cell-like phenotype resulted in similar significant increases in mean C m values to 41-49 mF/m(2) in both lines (p < 0.0001).

View Article and Find Full Text PDF

A method for label-free, electrochemical impedance immunosensing for the detection and quantification of three infection biomarkers in both buffer and directly in the defined model matrix of mock wound fluid is demonstrated. Triggering Receptor-1 Expressed on Myeloid cells (TREM-1) and Matrix MetalloPeptidase 9 (MMP-9) are detected via direct assay and N-3-oxo-dodecanoyl-l-HomoSerineLactone (HSL), relevant in bacterial quorum sensing, is detected using a competition assay. Detection is performed with gold screen-printed electrodes modified with a specific thiolated antibody.

View Article and Find Full Text PDF

The manipulation of ribosomal RNA (rRNA) extracted from E. coli cells by dielectrophoresis (DEP) has been demonstrated over the range of 3 kHz-50 MHz using interdigitated microelectrodes. Quantitative measurement using total internal reflection fluorescence microscopy of the time dependent collection indicated a positive DEP response characterized by a plateau between 3 kHz and 1 MHz followed by a decrease in response at higher frequencies.

View Article and Find Full Text PDF

Progress in microelectrode-based technologies has facilitated the development of sophisticated methods for manipulating and separating cells, bacteria, and other bioparticles. For many of these various applications, the theoretical modeling of the electrical response of compartmentalized particles to an external field is important. In this paper we address the analysis of the interaction between cells immersed in rf fields.

View Article and Find Full Text PDF

A review is presented of the present status of the theory, the developed technology and the current applications of dielectrophoresis (DEP). Over the past 10 years around 2000 publications have addressed these three aspects, and current trends suggest that the theory and technology have matured sufficiently for most effort to now be directed towards applying DEP to unmet needs in such areas as biosensors, cell therapeutics, drug discovery, medical diagnostics, microfluidics, nanoassembly, and particle filtration. The dipole approximation to describe the DEP force acting on a particle subjected to a nonuniform electric field has evolved to include multipole contributions, the perturbing effects arising from interactions with other cells and boundary surfaces, and the influence of electrical double-layer polarizations that must be considered for nanoparticles.

View Article and Find Full Text PDF

Dielectrophoresis can discriminate distinct cellular identities in heterogeneous populations, and monitor cell state changes associated with activation and clonal expansion, apoptosis, and necrosis, without the need for biochemical labels. Demonstrated capabilities include the enrichment of haematopoetic stem cells from bone marrow and peripheral blood, and adult stem cells from adipose tissue. Recent research suggests that this technique can predict the ultimate fate of neural stem cells after differentiation before the appearance of specific cell-surface proteins.

View Article and Find Full Text PDF

This Special Topic section is on dielectrophoresis, a growing area of widespread interest and relevance to the microfluidics and nanofluidics community.

View Article and Find Full Text PDF

The development of microelectrode-based technologies has facilitated the development of sophisticated methods for manipulating and separating cells, bacteria, and other bioparticles. For many of these various applications, the theoretical modeling of the electrical response of compartmentalized particles to an external electric field is important. This paper describes a new boundary element method, derived from a consideration of the charge densities induced at the interfaces of a compartmentalized particle, for modeling the dielectric properties of cells.

View Article and Find Full Text PDF

Human T lymphocytes were stimulated using phorbol myristate acetate and ionomycin. Twenty-four hours post-activation the cells were harvested for DNA content and for measurements using a newly developed cell profiling system employing dielectrophoresis. This system provides individual cell size and dielectrophoresis data for statistically relevant numbers of control and activated cells.

View Article and Find Full Text PDF