Publications by authors named "Ronald P Hart"

Translating genetic findings for neurodevelopmental and psychiatric disorders (NPDs) into actionable disease biology would benefit from large-scale and unbiased functional studies of NPD genes. Leveraging the cytosine base editing (CBE) system, we developed a pipeline for clonal loss-of-function (LoF) allele mutagenesis in human induced pluripotent stem cells (hiPSCs) by introducing premature stop codons (iSTOP) that lead to mRNA nonsense-mediated decay (NMD) or protein truncation. We tested the pipeline for 23 NPD genes on 3 hiPSC lines and achieved highly reproducible, efficient iSTOP editing in 22 genes.

View Article and Find Full Text PDF

Alcohol use disorder (AUD) induces complex transcriptional and regulatory changes across multiple brain regions including the caudate nucleus, which remains understudied. Using paired single-nucleus RNA-seq and ATAC-seq on caudate samples from 143 human postmortem brains, including 74 with AUD, we identified 17 distinct cell types. We found that a significant portion of the alcohol-induced changes in gene expression occurred through altered chromatin accessibility.

View Article and Find Full Text PDF
Article Synopsis
  • HIV-1-associated neurocognitive disorder (HAND) affects about 50% of HIV-1 patients, leading to long-term neurological issues, but its underlying mechanisms are still not fully understood.
  • Researchers created a model using human stem cells to simulate HIV-1 infection in the brain, showing that HIV-1 can infect microglia and trigger inflammation.
  • Their findings indicate that continuous activation of type I interferon signaling in HIV-1-infected microglia may be crucial for understanding the development of HAND.
View Article and Find Full Text PDF

Translating genetic findings for neurodevelopmental and psychiatric disorders (NPD) into actionable disease biology would benefit from large-scale and unbiased functional studies of NPD genes. Leveraging the cytosine base editing (CBE) system, here we developed a pipeline for clonal loss-of-function (LoF) allele mutagenesis in human induced pluripotent stem cells (hiPSCs) by introducing premature stop-codons (iSTOP) that lead to mRNA nonsense-mediated-decay (NMD) or protein truncation. We tested the pipeline for 23 NPD genes on 3 hiPSC lines and achieved highly reproducible, efficient iSTOP editing in 22 NPD genes.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) of electroencephalographic endophenotypes for alcohol use disorder (AUD) has identified noncoding polymorphisms within the gene. encodes GIRK2, a subunit of a G-protein-coupled inwardly rectifying potassium channel that regulates neuronal excitability. We studied the effect of upregulating using an isogenic approach with human glutamatergic neurons derived from induced pluripotent stem cells (male and female donors).

View Article and Find Full Text PDF

Ethanol metabolism is relatively understudied in neurons, even though changes in neuronal metabolism are known to affect their activity. Recent work demonstrates that ethanol is preferentially metabolized over glucose as a source of carbon and energy, and it reprograms neurons to a state of reduced energy potential and diminished capacity to utilize glucose once ethanol is exhausted. Ethanol intake has been associated with changes in neuronal firing and specific brain activity (EEG) patterns have been linked with risk for alcohol use disorder (AUD).

View Article and Find Full Text PDF

Dysfunctional RNA processing caused by genetic defects in RNA processing enzymes has a profound impact on the nervous system, resulting in neurodevelopmental conditions. We characterized a recessive neurological disorder in 18 children and young adults from 10 independent families typified by intellectual disability, motor developmental delay and gait disturbance. In some patients peripheral neuropathy, corpus callosum abnormalities and progressive basal ganglia deposits were present.

View Article and Find Full Text PDF

Human immunodeficiency virus type-1 (HIV-1) associated neurocognitive disorder (HAND) affects up to half of HIV-1 positive patients with long term neurological consequences, including dementia. There are no effective therapeutics for HAND because the pathophysiology of HIV-1 induced glial and neuronal functional deficits in humans remains enigmatic. To bridge this knowledge gap, we established a model simulating HIV-1 infection in the central nervous system using human induced pluripotent stem cell (iPSC) derived microglia combined with sliced neocortical organoids.

View Article and Find Full Text PDF

Abnormalities in neocortical and synaptic development are linked to neurodevelopmental disorders. However, the molecular and cellular mechanisms governing initial synapse formation in the prenatal neocortex remain poorly understood. Using polysome profiling coupled with snRNAseq on human cortical samples at various fetal phases, we identify human mRNAs, including those encoding synaptic proteins, with finely controlled translation in distinct cell populations of developing frontal neocortices.

View Article and Find Full Text PDF

Alcohol use disorders (AUD) are commonly occurring, heritable and polygenic disorders with etiological origins in the brain and the environment. To outline the causes and consequences of alcohol-related milestones, including AUD, and their related psychiatric comorbidities, the Collaborative Study on the Genetics of Alcoholism (COGA) was launched in 1989 with a gene-brain-behavior framework. COGA is a family based, diverse (~25% self-identified African American, ~52% female) sample, including data on 17,878 individuals, ages 7-97 years, in 2246 families of which a proportion are densely affected for AUD.

View Article and Find Full Text PDF

Alcohol Use Disorder is a complex genetic disorder, involving genetic, neural, and environmental factors, and their interactions. The Collaborative Study on the Genetics of Alcoholism (COGA) has been investigating these factors and identified putative alcohol use disorder risk genes through genome-wide association studies. In this review, we describe advances made by COGA in elucidating the functional changes induced by alcohol use disorder risk genes using multimodal approaches with human cell lines and brain tissue.

View Article and Find Full Text PDF

Background: Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in the United States. Emerging evidence suggests that mitochondrial metabolism and epigenetics play an important role in the development and progression of DN and its complications. For the first time, we investigated the regulation of cellular metabolism, DNA methylation, and transcriptome status by high glucose (HG) in the kidney of leptin receptor-deficient db/db mice using multi-omics approaches.

View Article and Find Full Text PDF

Unlabelled: Genome-wide association analysis (GWAS) of electroencephalographic endophenotypes for alcohol use disorder (AUD) has identified non-coding polymorphisms within the gene. encodes GIRK2, a subunit of a G protein-coupled inwardly-rectifying potassium channel that regulates neuronal excitability. How changes in GIRK2 affect human neuronal excitability and the response to repeated ethanol exposure is poorly understood.

View Article and Find Full Text PDF

The amyloid precursor protein (APP) is linked to the genetics and pathogenesis of Alzheimer's disease (AD). It is the parent protein of the β-amyloid (Aβ) peptide, the main constituent of the amyloid plaques found in an AD brain. The pathways from APP to Aβ are intensively studied, yet the normal functions of APP itself have generated less interest.

View Article and Find Full Text PDF

Chronic binge-like drinking is a risk factor for age-related dementia, however, the lasting and irreversible effect of alcohol on the brain remains elusive. Transcriptomic changes in brain cortices revealed pro-ageing hallmarks upon chronic ethanol exposure and these changes predominantly occur in neurons. The changes are attributed to a prioritized ethyl alcohol oxidation in these cells via the NADPH-dependent cytochrome pathway.

View Article and Find Full Text PDF

Primary neuronal cultures have proven to be a powerful tool for studying mechanisms in neuroscience. It is technically challenging and expensive to reproduce high quality viable neuronal cultures. Laboratories that are not experienced or equipped to prepare primary neuron cultures may have difficulty producing consistent cultures for experiments.

View Article and Find Full Text PDF

Mutations in many synaptic genes are associated with autism spectrum disorders (ASD), suggesting that synaptic dysfunction is a key driver of ASD pathogenesis. Among these mutations, the R451C substitution in the NLGN3 gene that encodes the postsynaptic adhesion molecule Neuroligin-3 is noteworthy because it was the first specific mutation linked to ASDs. In mice, the corresponding Nlgn3 R451C-knockin mutation recapitulates social interaction deficits of ASD patients and produces synaptic abnormalities, but the impact of the NLGN3 R451C mutation on human neurons has not been investigated.

View Article and Find Full Text PDF

Synonymous and noncoding single nucleotide polymorphisms (SNPs) in the KCNJ6 gene, encoding G protein-gated inwardly rectifying potassium channel subunit 2 (GIRK2), have been linked with increased electroencephalographic frontal theta event-related oscillations (ERO) in subjects diagnosed with alcohol use disorder (AUD). To identify molecular and cellular mechanisms while retaining the appropriate genetic background, we generated induced excitatory glutamatergic neurons (iN) from iPSCs derived from four AUD-diagnosed subjects with KCNJ6 variants ("Affected: AF") and four control subjects without variants ("Unaffected: UN"). Neurons were analyzed for changes in gene expression, morphology, excitability and physiological properties.

View Article and Find Full Text PDF

Background: The interaction of aging-related, genetic, and environmental factors is thought to contribute to the etiology of late-onset, sporadic Alzheimer's disease (AD). We previously reported that serum levels of '-dichlorodiphenyldichloroethylene (DDE), a long-lasting metabolite of the organochlorine pesticide dichlorodiphenyltrichloroethane (DDT), were significantly elevated in patients with AD and associated with the risk of AD diagnosis. However, the mechanism by which DDT may contribute to AD pathogenesis is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Microglia play a key role in brain development and are implicated in Alzheimer's disease, particularly in individuals with Down syndrome (DS), who have an increased risk for AD.
  • Research using iPSC-based organoid models shows that DS microglia are more active in synaptic pruning, which impacts neuronal functions.
  • The study finds that DS microglia show signs of aging when exposed to harmful tau proteins, suggesting that manipulating type I interferon receptors could enhance their function and potentially prevent age-related changes.
View Article and Find Full Text PDF

Gene expression studies using xenograft transplants or co-culture systems, usually with mixed human and mouse cells, have proven to be valuable to uncover cellular dynamics during development or in disease models. However, the mRNA sequence similarities among species presents a challenge for accurate transcript quantification. To identify optimal strategies for analyzing mixed-species RNA sequencing data, we evaluate both alignment-dependent and alignment-independent methods.

View Article and Find Full Text PDF

Homozygous mutations in the gene encoding the scavenger mRNA-decapping enzyme, DcpS, have been shown to underlie developmental delay and intellectual disability. Intellectual disability is associated with both abnormal neocortical development and mRNA metabolism. However, the role of DcpS and its scavenger decapping activity in neuronal development is unknown.

View Article and Find Full Text PDF

Early changes in astrocyte energy metabolism are associated with late-onset Alzheimer's disease (LOAD), but the underlying mechanism remains elusive. A previous study suggested an association between a synonymous SNP (rs1012672, C→T) in LRP6 gene and LOAD; and that is indeed correlated with diminished LRP6 gene expression in the frontal cortex region. The authors show that LRP6 is a unique Wnt coreceptor on astrocytes, serving as a bimodal switch that modulates their metabolic landscapes.

View Article and Find Full Text PDF

African Americans (AA) have lower prevalence of alcohol dependence and higher subjective response to alcohol than European Americans. Genome-wide association studies (GWAS) have identified genes/variants associated with alcohol dependence specifically in AA; however, the sample sizes are still not large enough to detect variants with small effects. Admixture mapping is an alternative way to identify alcohol dependence genes/variants that may be unique to AA.

View Article and Find Full Text PDF