Lamb-dip spectroscopy of the C-N stretching band of methylamine has been systematically extended to P-, Q-, and R-branch by using microwave sidebands of a large number of CO laser lines as frequency-tunable infrared sources in a sub-Doppler spectrometer. Lamb-dip signals of more than 150 spectral lines have been observed with a resolution of 0.4 MHz and their frequencies have been precisely measured with an accuracy of ±0.
View Article and Find Full Text PDFThe C-N stretching infrared fundamental of CH(3)NH(2) has been investigated by high-resolution laser sideband and Fourier transform synchrotron spectroscopy to explore the energy level structure and to look for possible interactions with high-lying torsional levels of the ground state and other vibrational modes. The spectrum is complicated by two coupled large-amplitude motions in the molecule, the CH(3) torsion and the NH(2) inversion, which lead to rich spectral structure with a wide range of energy level splittings and relative line intensities. Numerous sub-bands have been assigned for K values ranging up to 12 for the stronger a inversion species for the v(t) = 0 torsional state, along with many of the weaker sub-bands of the s species.
View Article and Find Full Text PDFWe report saturation dip spectroscopy in the C-N stretching band of CH(3)NH(2) with a resolution of 0.4 MHz and an accuracy of 0.1 MHz by use of a CO(2)-laser/microwave-sideband spectrometer.
View Article and Find Full Text PDF