The nickel-catalyzed direct carboxylation of alkenes with the cheap and abundantly available C1 building block carbon dioxide (CO2 ) in the presence of a base has been achieved. The one-pot reaction allows for the direct and selective synthesis of a wide range of α,β-unsaturated carboxylates (TON>100, TOF up to 6 h(-1) , TON=turnover number, TOF=turnover frequency). Thus, it is possible, in one step, to synthesize sodium acrylate from ethylene, CO2 , and a sodium salt.
View Article and Find Full Text PDFA set of heterogenized olefin-metathesis catalysts, which consisted of Ru complexes with the H(2)ITap ligand (1,3-bis(2',6'-dimethyl-4'dimethyl aminophenyl)-4,5-dihydroimidazol-2-ylidene) that had been adsorbed onto a silica support, has been prepared. These complexes showed strong binding to the solid support without the need for tethering groups on the complex or functionalized silica. The catalysts were tested in the ring-opening-ring-closing-metathesis (RO-RCM) of cyclooctene (COE) and the self-metathesis of methyl oleate under continuous-flow conditions.
View Article and Find Full Text PDFFor more than three decades the catalytic synthesis of acrylates from the cheap and abundantly available C(1) building block carbon dioxide and alkenes has been an unsolved problem in catalysis research, both in academia and industry. Herein, we describe a homogeneous catalyst based on nickel that permits the catalytic synthesis of the industrially highly relevant acrylate sodium acrylate from CO(2), ethylene, and a base, as demonstrated, at this stage, by a turnover number of greater than 10 with respect to the metal.
View Article and Find Full Text PDFReactions of the platinum(IV) complexes [PtMe(3)(OCMe(2))(3)](BF(4)) (1(BF(4))), [(PtMe(3)I)(4)] (2), and [PtMe(3)I(py)(2)] (3) with the N,N-heterocyclic carbene 1,3-dimethylimidazol-2-ylidene (N,N-hc, 4) resulted in a rapid reductive elimination of ethane, yielding platinum(II) complexes [PtMe(N,N-hc)(3)](+) (7), trans-[PtMeI(N,N-hc)(2)] (8), and cis-[PtMe(py)(N,N-hc)(2)](+) (10), respectively. Subsequent substitution of the iodo ligand in 8 by pyridine resulted in the formation of trans-[PtMe(py)(N,N-hc)(2)](CF(3)COO) (9(CF(3)COO)). 9 and 10 are stereoisomers.
View Article and Find Full Text PDF