Publications by authors named "Ronald L Wange"

Most oligonucleotide therapeutics use Watson-Crick-Franklin base-pairing hybridization to target RNA and mitigate disease-related protein production. Using targets that were previously inaccessible to small molecules and biologics, synthetic nucleotides have provided treatments for severely debilitating and life-threatening diseases. However, these therapeutics possess unique pharmacologies that require specific considerations for their distribution, clearance, and other clinical pharmacology characteristics.

View Article and Find Full Text PDF

Nonclinical safety studies are typically conducted to establish a toxicity profile of a new pharmaceutical in clinical development. Such a profile may encompass multiple differing types of animal studies, or not! Some types of animal studies may not be warranted for a specific program or may only require a limited evaluation if scientifically justified. The goal of this course was to provide a practical perspective on regulatory writing of a dossier(s) using the weight of evidence (WOE) approach for carcinogenicity, drug abuse liability and pediatric safety assessments.

View Article and Find Full Text PDF

To avoid adverse events in humans, toxicity studies in nonclinical species have been the foundation of safety evaluation in the pharmaceutical industry. However, it is recognized that working with animals in research is a privilege, and conscientious use should always respect the 3Rs: replacement, reduction, and refinement. In the wake of the shortages in routine nonrodent species and considering that nonanimal methods are not yet sufficiently mature, the value of the rabbit as a nonrodent species is worth exploring.

View Article and Find Full Text PDF

Embryofetal toxicity studies are conducted to support inclusion of women of childbearing potential in clinical trials and to support labeling for the marketed pharmaceutical product. For biopharmaceuticals, which frequently lack activity in the rodent or rabbit, the nonhuman primate is the standard model to evaluate embryofetal toxicity. These studies have become increasingly challenging to conduct due to the small number of facilities capable of performing them and a shortage of sexually mature monkeys.

View Article and Find Full Text PDF

Nonhuman primates (NHP) have become a commonly used nonrodent species for general toxicity testing for pharmaceuticals reviewed by CDER. Their increased use in pharmaceutical testing appears to have been driven by both increased use in small molecule drug development programs as well as a trend for biologics making up a greater percentage of pharmaceutical development programs. While always in limited supply, the COVID-19 pandemic acutely impaired the availability of NHPs for pharmaceutical testing due to disruptions in the supply and an increased demand to support COVID-19-directed research programs.

View Article and Find Full Text PDF

The nonhuman primate (NHP) has always been a limited resource for pharmaceutical research with ongoing efforts to conserve. This is due to their inherent biological properties, the growth in biotherapeutics and other modalities, and their use in small molecule drug development. The SARS-CoV-2 pandemic has significantly impacted the availability of NHPs due to the immediate need for NHPs to develop COVID-19 vaccines and treatments and the China NHP export ban; thus, accelerating the need to further replace, reduce and refine (3Rs) NHP use.

View Article and Find Full Text PDF

The safety testing of pharmaceutical candidates has traditionally relied on data gathered from studies in animals, and these sources of information remain a vital component of the safety assessment for new drug and biologic products. However, there are clearly ethical implications that attend the use of animals for safety testing, and FDA fully supports the principles of the 3Rs, as it relates to animal usage; these being to replace, reduce and refine. We provide an overview of some of the events and activities (legal and programmatic) that have had, and continue to have, the greatest impact on animal use in pharmaceutical development, and highlight some ongoing efforts to further meet the challenge of achieving our mission as humanely as possible.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers are advancing novel 3D cell culture models that better mimic the human biological environment, improving the prediction of drug safety and efficacy.
  • * The article reviews various types of 3D culture systems, their applications in drug testing, the challenges they face, and focuses on specific models related to key organs such as the liver, intestine, kidney, and neurons.
View Article and Find Full Text PDF
Article Synopsis
  • * While traditional methods are effective at predicting clinical outcomes, there's a push for improved methodologies, especially with the advent of New Approach Methodologies (NAMs) that are being increasingly integrated into drug development.
  • * The FDA/CDER acknowledges both the opportunities and challenges that NAMs bring to regulatory processes and encourages dialogue with stakeholders to enhance testing methods and potentially speed up drug development.
View Article and Find Full Text PDF

Unopposed PI3-kinase activity and 3'-phosphoinositide production in Jurkat T cells, due to a mutation in the PTEN tumour suppressor protein, results in deregulation of PH domain-containing proteins including the serine/threonine kinase PKB/Akt. In Jurkat cells, PKB/Akt is constitutively active and phosphorylated at the activation-loop residue (Thr308). 3'-phosphoinositide-dependent protein kinase-1 (PDK-1), an enzyme that also contains a PH domain, is thought to catalyse Thr308 phosphorylation of PKB/Akt in addition to other kinase families such as PKC isoforms.

View Article and Find Full Text PDF

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a multifunctional tumor suppressor, has been shown to play a regulatory role in cell migration. Dictyostelium discoideum cells lacking PTEN exhibited impaired migration toward chemoattractant gradients. In the present study, we investigated the involvement of PTEN in chemotaxis of mammalian cells by examining PTEN-null Jurkat T cells.

View Article and Find Full Text PDF

ADAP (adhesion and degranulation-promoting adaptor protein) and SKAP55 (Src kinase-associated phosphoprotein of 55 kDa) are T cell adaptors that mediate inside-out signaling from the T cell antigen receptor to integrins, giving rise to increased integrin affinity/avidity and formation of the immunological synapse between the T cell and the antigen-presenting cell. These two proteins are tightly and constitutively associated with one another, and their ability to interact is required for inside-out signaling. Here we show in an ADAP-deficient Jurkat T cell line that the co-dependence of ADAP and SKAP55 extends beyond their functional and physical interactions and show that SKAP55 protein is unstable in the absence of ADAP.

View Article and Find Full Text PDF

The tumor suppressor PTEN is mutated in a high percentage of human cancers, and is implicated in pathways regulating cell growth, proliferation, survival, and migration. Despite significant advances, our understanding of its mechanisms of action remains incomplete. We have used a high-throughput proteomic immunoblotting approach to identify proteins whose expression levels are modulated by PTEN.

View Article and Find Full Text PDF

The Tec family kinase Itk is an important regulator of Ca(2+) mobilization and is required for in vivo responses to Th2-inducing agents. Recent data also implicate Itk in TCR-induced regulation of the actin cytoskeleton. We have evaluated the requirements for Itk function in TCR-induced actin polarization.

View Article and Find Full Text PDF

Phosphoinositide 3-kinase (PI3K) is important in TCR signaling. PI3K generates phosphatidylinositol 3, 4, 5-trisphosphate (PI-3,4,5-P3), which regulates membrane localization and/or activity of multiple signaling proteins. PTEN (phosphatase and tensin homologue deleted on chromosome 10) opposes PI3K, reversing this reaction.

View Article and Find Full Text PDF

Protein tyrosine kinases have long been recognized as the most proximal actors in T-cell antigen receptor (TCR) signaling. Three non-receptor tyrosine kinase families (Src, ZAP-70 and Tec) are known to be critical, but a new study now shows that room needs to be made in this pathway for yet another protein tyrosine kinase family - Abl/Arg.

View Article and Find Full Text PDF

B lymphocytes and T lymphocytes utilize several proteins with common functions to transduce signals from their respective receptors. However, at the hierarchial signalling level of SLP-76 [Src homology 2(SH2) domain-containing leukocyte protein of 76-kDa] and LAT (linker for activation of T cells) in T cells, the only corresponding protein in B cells was known to be BLNK (B cell linker protein). It was thought that perhaps BLNK performed the cognate roles of SLP-76 and LAT in B cells; however, mounting evidence to the contrary revealed that this hypothesis was not robust.

View Article and Find Full Text PDF

The balance of activities between the proto-oncogene phosphoinositide 3-kinase (PI3K) and the tumour suppressor gene PTEN has been shown to affect cellular growth and proliferation, as well as tumorigenesis. Previously, PTEN expression in the PTEN-null Jurkat T cell leukaemia line was shown to cause reduced proliferation without cell cycle arrest. Here, we further these investigations by determining the basis for this phenomenon.

View Article and Find Full Text PDF

The initiating events associated with T activation in response to stimulation of the T cell antigen receptor (TCR) and costimulatory receptors, such as CD28, are intimately associated with the enzymatically catalyzed addition of phosphate not only to key tyrosine, threonine and serine residues in proteins but also to the D3 position of the myo-inositol ring of phosphatidylinositol (PtdIns). This latter event is catalyzed by the lipid kinase phosphoinositide 3-kinase (PI3K). The consequent production of PtdIns(3,4)P2 and PtdIns(3,4,5)P3 serves both to recruit signaling proteins to the plasma membrane and to induce activating conformational changes in proteins that contain specialized domains for the binding of these phospholipids.

View Article and Find Full Text PDF

Phosphoinositide 3-kinases (PI3Ks) phosphorylate the D3 position of the myo -inositol ring of inositol phospholipids, producing, amongst others, phosphatidylinositol-(3,4,5)-trisphosphate. This activity is opposed by the lipid phosphatase PTEN, which catalyzes the removal of this phosphate. Stimulation of PI3Ks is elicited by engagement of receptors for antigen, cytokines and chemokines, and by co-stimulatory molecules.

View Article and Find Full Text PDF