Background And Aims: A key structural adaptation of vascular plants was the evolution of specialized vascular and mechanical tissues, innovations likely to have generated novel cell wall architectures. While collenchyma is a strengthening tissue typically found in growing organs of angiosperms, a similar tissue occurs in the petiole of the fern Asplenium rutifolium.
Methods: The in situ cell wall (ultra)structure and composition of this tissue was investigated and characterized mechanically as well as structurally through nano-indentation and wide-angle X-ray diffraction, respectively.
Mitochondrial DNA B Resour
April 2017
(Sw.) C. Y.
View Article and Find Full Text PDFBackground And Aims: Innovations in vegetative and reproductive characters were key factors in the evolutionary history of land plants and most of these transformations, including dramatic changes in life cycle structure and strategy, necessarily involved cell-wall modifications. To provide more insight into the role of cell walls in effecting changes in plant structure and function, and in particular their role in the generation of vascularization, an antibody-based approach was implemented to compare the presence and distribution of cell-wall glycan epitopes between (free-living) gametophytes and sporophytes of Ceratopteris richardii 'C-Fern', a widely used model system for ferns.
Methods: Microarrays of sequential diamino-cyclohexane-tetraacetic acid (CDTA) and NaOH extractions of gametophytes, spores and different organs of 'C-Fern' sporophytes were probed with glycan-directed monoclonal antibodies.
Plant cell walls are essential for most aspects of plant growth, development, and survival, including cell division, expansive cell growth, cell-cell communication, biomechanical properties, and stress responses. Therefore, characterizing cell wall diversity contributes to our overall understanding of plant evolution and development. Recent biochemical analyses, concomitantly with whole genome sequencing of plants located at pivotal points in plant phylogeny, have helped distinguish between homologous characters and those which might be more derived.
View Article and Find Full Text PDFBackground And Aims: 'Loxoscaphoid' Asplenium species are morphologically a remarkably distinct group of Aspleniaceae. Except for two preliminary chromosome counts of Asplenium theciferum, the cytology of this group of species has, however, been largely unstudied.
Methods: Chromosome counts were obtained by acetocarmine squash preparations of one mitotic cell and several meiotic cells.
Background And Aims: Projections of cell wall material into the intercellular spaces between parenchymatic cells have been observed since the mid-19th century. Histochemical staining suggested that these intercellular protuberances are probably pectic in nature, but uncertainties about their origin, composition and biological function(s) have remained.
Methods: Using electron and light microscopy, including immunohistochemical methods, the structure and the presence of some major cell wall macromolecules in the intercellular pectic protuberances (IPPs) of the cortical parenchyma have been studied in a specimen of the Asplenium aethiopicum complex.
Phylogenetic relationships among 20 taxa of the fern genus Asplenium subgenus Ceterach (Filicopsida, represented by 73 accessions) were investigated using DNA sequence data from the nuclear ribosomal internal transcribed spacers (ITS nDNA) and plastid trnL-F intergenic spacer. In addition, a single sample per taxon was used in an analysis of the plastid rbcL gene. Chromosome counts were determined for all the samples, and these demonstrated a range from diploid to octoploid.
View Article and Find Full Text PDF