To better understand the neurobiology of methamphetamine (METH) dependence and the cognitive impairments induced by METH use, we compared the effects of extended (12 h) and limited (1 h) access to METH self-administration on locomotor activity and object place recognition, and on extracellular dopamine levels in the nucleus accumbens and caudate-putamen. Rats were trained to self-administer intravenous METH (0.05 mg/kg).
View Article and Find Full Text PDFThe continuing spread of methamphetamine (METH) abuse has stimulated research aimed at understanding consequences of its prolonged exposure. Alterations in nigrostriatal dopamine (DA) system parameters have been characterized in experimental studies after discontinuation of long-term METH but fewer studies have included similar assessments during METH exposure. Here, we report METH plasma pharmacokinetics and striatal DA system alterations in rat after noncontingent and contingent METH administration for 7.
View Article and Find Full Text PDFRationale: Experimental animal studies have shown that repeated administration of psychostimulants, such as methamphetamine (METH), results in an altered behavioral response profile, which includes the sensitization of both locomotor and stereotyped behaviors. Although sensitization of these behaviors has been characterized in detail during bolus, investigator-administered drug administration, little is known about the development or expression of stereotypies during psychostimulant self-administration.
Objective/methods: The present study investigated in rats the expression of focused stereotyped behaviors during an extended access, escalation procedure of METH self-administration.
The metabotropic glutamate 2/3 (mGlu2/3) receptor agonist LY379268 ([-]-2-oxa-4-aminobicyclo [3.1.0] hexane-4,6-dicarboxylate) attenuates both nicotine self-administration and cue-induced nicotine seeking in rats.
View Article and Find Full Text PDFRepeated phencyclidine (PCP) administration induces cognitive disruptions resembling those seen in schizophrenia. Alterations in glutamate transmission and γ-aminobutyric acid (GABA) function in the prefrontal cortex (PFC) have been implicated in these PCP-induced deficits, as well as in cognitive symptoms of schizophrenia. PCP-induced cognitive deficits are reversed by chronic treatment with the atypical antipsychotic clozapine in rats.
View Article and Find Full Text PDFDisturbed information processing observed in neuropsychiatric disorders is reflected by deficient sensorimotor gating, measured as prepulse inhibition (PPI) of the acoustic startle response (ASR). Long-term, higher dose methamphetamine (METH) abuse patterns are associated with cognitive impairments, mania and/or schizophrenia-like psychosis. The present study investigated in rats METH-induced impairment of sensorimotor gating using an intravenous self-administration (IVSA) escalating dose procedure.
View Article and Find Full Text PDFBackground: Bipolar disorder, particularly in children, is characterized by rapid cycling and switching, making circadian clock genes plausible molecular underpinnings for bipolar disorder. We previously reported work establishing mice lacking the clock gene D-box binding protein (DBP) as a stress-reactive genetic animal model of bipolar disorder. Microarray studies revealed that expression of two closely related clock genes, RAR-related orphan receptors alpha (RORA) and beta (RORB), was altered in these mice.
View Article and Find Full Text PDFBingeing is one pattern of high-dose methamphetamine (METH) abuse, which involves continuous drug taking over several days and can result in psychotic behaviors for which the brain pathology remains poorly defined. A corresponding animal model of this type of METH exposure may provide novel insights into the neurochemical and behavioral sequelae associated with this condition. Accordingly, to simulate the pharmacokinetic profile of a human METH binge exposure in rats, we used a computer-controlled, intravenous METH procedure (dynamic infusion, DI) to overcome species differences in METH pharmacokinetics and to replicate the human 12-h plasma METH half-life.
View Article and Find Full Text PDFAbuse of stimulant drugs such as methamphetamine (METH) and cocaine has been associated with long-lasting persistent behavioral alterations. Although METH-induced changes in the striatal dopaminergic system might play a role in these effects, the potential underlying neuroanatomical substrate for the chronic cognitive dysfunction in METH users is unclear. To investigate the involvement of non-dopaminergic systems in the neurotoxic effects of METH, we treated rats with an escalating dose-multiple binge regimen, which we have suggested may more closely simulate human METH exposure profiles.
View Article and Find Full Text PDFRats exposed to methamphetamine (METH) in an acute high dose "binge" pattern have been reported to exhibit a persistent deficit in a novel object recognition (NOR) task, which may suggest a potential risk for human METH abusers. However, most high dose METH abusers initially use lower doses before progressively increasing the dose, only eventually engaging in multiple daily administrations. To simulate this pattern of METH exposure, we administered progressively increasing doses of METH to rats over a 14 day interval, then treated them with daily METH binges for 11 days.
View Article and Find Full Text PDFA major feature of human methamphetamine (METH) abuse is the gradual dose escalation that precedes high-dose exposure. The period of escalating doses (EDs) is likely associated with development of tolerance to aspects of METH's pharmacologic and toxic effects but the relative contributions of pharmacokinetic and pharmacodynamic factors have not been well defined. In our prior studies in rats, we showed that pretreatment with an ED-METH regimen (0.
View Article and Find Full Text PDFMethamphetamine (METH) administration mimics many of the symptoms of mania and can produce psychosis after chronic use. Both rodents and man display interindividual variation in response to METH. The molecular mechanisms underlying these differences might be relevant to both stimulant addiction and endogenous psychosis.
View Article and Find Full Text PDFWe developed a computer-controlled intravenous methamphetamine (METH) administration procedure (dynamic infusion), which enables us to compensate for an important pharmacokinetic difference between rats and humans by imposing a 12-h half-life for the drug in rats. Dynamic infusion of 0.5 mg/kg METH produced a pharmacokinetic profile that closely simulates the METH exposure pattern in humans, including an apparent half-life of 11.
View Article and Find Full Text PDFThe translational value of preclinical models of methamphetamine abuse depends in large part on the degree to which the drug regimens used in animals produce methamphetamine exposure patterns similar to those experienced by human methamphetamine abusers. To approximate one common form of methamphetamine abuse, we studied the effects of a schedule of intravenous methamphetamine administration in rats which included 2 weeks of progressively more frequent drug injections (0.125 mg/kg/injection) followed by 40 maintenance days during which animals received 40 daily injections (at 15-min intervals), with the dose gradually increasing (0.
View Article and Find Full Text PDFMost evidence supports the continued use of stimulants as the best available pharmacotherapy for the treatment of children with attention-deficit/hyperactivity disorder (ADHD), but little is known about possible enduring behavioral and neuroadaptational consequences of long-term stimulant exposure. Although a variety of preclinical studies, particularly those using methylphenidate (MP), have attempted to address these issues, most of these studies have used procedures that might not adequately simulate clinical treatment conditions, and results have not been entirely consistent. In particular, the rationale for selection of MP doses that simulate clinical exposure has not been well defined.
View Article and Find Full Text PDFThe disruption of prepulse inhibition (PPI) in rats by dopamine (DA) agonists is used to study the neural basis of strain differences in dopaminergic function. We reported that, compared to Long-Evans (LEH) rats, Sprague-Dawley (SDH) rats are more sensitive to the PPI-disruptive effects of the direct D1/D2 agonist apomorphine (APO) and the indirect DA agonist d-amphetamine (AMPH). This strain difference is heritable, with PPI drug sensitivity following a generational pattern (SDH>N2>F1>LEH) suggestive of additive effects of multiple genes.
View Article and Find Full Text PDFThe gut-brain peptide cholecystokinin (CCK) has been implicated in the regulation of dopamine (DA) transmission in the brain. CCK agonists have been shown to modify baseline and stimulant-induced DA release in the brain via CCK-A mediated mechanisms. However, the role of endogenous CCK in regulating brain DA via CCK-A receptors has not been fully elucidated.
View Article and Find Full Text PDFThe neurotoxic effects of methamphetamine (METH) have been characterized primarily from the study of high-dose binge regimens in rodents. However, this drug administration paradigm does not include a potentially important feature of stimulant abuse in humans, that is, the gradual escalation of stimulant doses that frequently occurs prior to high-dose exposure. We have argued that pretreatment with escalating doses (EDs) might significantly alter the neurotoxic profile produced by a single high-dose binge.
View Article and Find Full Text PDFTardive dyskinesia has been and continues to be a significant problem associated with long-term antipsychotic use, but its pathophysiology remains unclear. In the last 10 years, preclinical studies of the administration of antipsychotics to animals, as well as clinical studies of oxidative processes in patients given antipsychotic medications, with and without tardive dyskinesia, have continued to support the possibility that neurotoxic free radical production may be an important consequence of antipsychotic treatment, and that such production may relate to the development of dyskinetic phenomena. In line with this hypothesis, evidence has accumulated for the efficacy of antioxidants, primarily vitamin E (alpha-tocopherol), in the treatment and prevention of tardive dyskinesia.
View Article and Find Full Text PDFMethylphenidate (MP) (ritalin) is widely used in the treatment of children and adolescents with attention deficit hyperactivity disorder, but little is known about therapeutic mechanisms or about possible consequences of long-term exposure. To more closely simulate the clinical use of the drug, we orally administered MP to adolescent rats during the dark-active phase of the circadian cycle at doses (0.75-3.
View Article and Find Full Text PDFStrain differences in sensitivity to dopamine agonist-induced disruption of prepulse inhibition (PPI) may be a useful model for the genetics of PPI deficits in neuropsychiatric disorders. Compared with Long-Evans (LE) rats, Sprague-Dawley (SD) rats are more sensitive to the PPI-disruptive effects of the DA agonist apomorphine. The authors tested the hypothesis that this strain difference reflects brain function rather than peripheral physiology.
View Article and Find Full Text PDFThe authors measured serum levels of haloperidol (HL) in outpatients ages 45-83 years with psychosis treated with HL for at least 1 month. Blood was collected from 32 patients with either schizophrenia (n = 23) or Alzheimer's disease (AD) (n = 9). HL daily dose was greater in patients with schizophrenia (median age, 59) than in AD patients (median age, 80) (P < 0.
View Article and Find Full Text PDF