Publications by authors named "Ronald Kohanski"

Article Synopsis
  • The National Institute on Aging (NIA) was created in 1974 to study aging and how it affects older people’s health and happiness.
  • Early research by the NIA showed that studying aging was really important and helped scientists learn more about aging, diseases, and staying healthy.
  • Now, the NIA is encouraging more diverse researchers to join the field to keep making progress in aging research.
View Article and Find Full Text PDF

The conceptualization of the field of geroscience, which began about 10 years ago, marks, together with the publication of "The hallmarks of aging" (see López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. 1194-1217, 2013), a significant watershed in the development of aging research. Based on a very simple and commonly accepted premise, namely, that aging biology is at the core the most significant risk factor for all chronic diseases affecting the elderly, geroscience became possible because of earlier significant developments in the field of aging biology.

View Article and Find Full Text PDF

Up to 85% of adult cancer survivors and 99% of adult survivors of childhood cancer live with an accumulation of chronic conditions, frailty, and/or cognitive impairments resulting from cancer and its treatment. Thus, survivors often show an accelerated development of multiple geriatric syndromes and need therapeutic interventions. To advance progress in this area, the National Cancer Institute convened the second of 2 think tanks under the auspices of the Cancer and Accelerated Aging: Advancing Research for Healthy Survivors initiative.

View Article and Find Full Text PDF

Observational data have shown that some cancer survivors develop chronic conditions like frailty, sarcopenia, cardiac dysfunction, and mild cognitive impairment earlier and/or at a greater burden than similarly aged individuals never diagnosed with cancer or exposed to systemic or targeted cancer therapies. In aggregate, cancer- and treatment-related physical, cognitive, and psychosocial late- and long-term morbidities experienced by cancer survivors are hypothesized to represent accelerated or accentuated aging trajectories. However, conceptual, measurement, and methodological challenges have constrained efforts to identify, predict, and mitigate aging-related consequences of cancer and cancer treatment.

View Article and Find Full Text PDF

Death from chronic lung disease is increasing and chronic obstructive pulmonary disease has become the third leading cause of death in the United States in the past decade. Both chronic and acute lung diseases disproportionately affect elderly individuals, making it likely that these diseases will become more frequent and severe as the worldwide population ages. Chronic lung diseases are associated with substantial morbidity, frequently resulting in exercise limiting dyspnea, immobilization, and isolation.

View Article and Find Full Text PDF

Aging is the major risk factor for both the development of chronic diseases and loss of functional capacity. Geroscience provides links among the biology of aging, the biology of disease, and the physiology of frailty, three fields where enormous progress has been made in the last few decades. While, previously, the focus was on the role of aging in susceptibility to disease and disability, the other side of this relationship, which is the contribution of disease to aging, has been less explored at the molecular/cellular level.

View Article and Find Full Text PDF

Population aging is unprecedented, without parallel in human history, and the 21st century will witness even more rapid aging than did the century just past. Improvements in public health and medicine are having a profound effect on population demographics worldwide. By 2017, there will be more people over the age of 65 than under age 5, and by 2050, two billion of the estimated nine billion people on Earth will be older than 60 (http://unfpa.

View Article and Find Full Text PDF

We report the crystal structure of two variants of Drosophila melanogaster insulin-like peptide 5 (DILP5) at a resolution of 1.85 Å. DILP5 shares the basic fold of the insulin peptide family (T conformation) but with a disordered B-chain C terminus.

View Article and Find Full Text PDF

Insulin/Insulin-like growth factor signaling regulates homeostasis and growth in mammals, and is implicated in diseases from diabetes to cancer. In Drosophila melanogaster, as in other invertebrates, multiple Insulin-Like Peptides (DILPs) are encoded by a family of related genes. To assess DILPs' physiological roles, we generated small deficiencies that uncover single or multiple dilps, generating genetic loss-of-function mutations.

View Article and Find Full Text PDF

In cartilage and bone-producing cells, proliferation and growth are balanced with terminal differentiation. Maintaining this balance is essential for modeling, growth, and maintenance of the skeleton. Cartilage growth follows a program regulated by hormones and cytokines interacting with a counter-regulatory system in which hedgehog and parathyroid hormone (PTH)-rP signals are key elements.

View Article and Find Full Text PDF

Bisubstrate analogs have the potential to provide enhanced specificity for protein kinase inhibition and tools to understand catalytic mechanism. Previous efforts led to the design of a peptide-ATP conjugate bisubstrate analog utilizing aminophenylalanine in place of tyrosine and a thioacetyl linker to the gamma-phosphate of ATP which was a potent inhibitor of the insulin receptor kinase (IRK). In this study, we have examined the contributions of various electrostatic and structural elements in the bisubstrate analog to IRK binding affinity.

View Article and Find Full Text PDF

Insulin receptors are abundant in the central nervous system, but their roles remain elusive. Here we show that the insulin receptor functions in axon guidance. The Drosophila insulin receptor (DInR) is required for photoreceptor-cell (R-cell) axons to find their way from the retina to the brain during development of the visual system.

View Article and Find Full Text PDF
Article Synopsis
  • Insulin activates Stat5 in cells with high insulin receptor (IR) levels, indicating a potential role for Stat5 in insulin signaling pathways.
  • The interaction between Stat5b and insulin receptor substrate 1 (IRS-1) occurs at a specific phosphorylation site on the IR, and this interaction is crucial for Stat5 activation.
  • While JAK kinases also play a role in Stat5 activation after insulin stimulation, some pathways appear to be JAK-independent, suggesting that the IR can directly phosphorylate Stat5b.
View Article and Find Full Text PDF