Publications by authors named "Ronald Karwoski"

The patterns of idiopathic pulmonary fibrosis (IPF) lung disease that directly correspond to elevated hyperpolarised gas diffusion-weighted (DW) MRI metrics are currently unknown. This study aims to develop a spatial co-registration framework for a voxel-wise comparison of hyperpolarised gas DW-MRI and CALIPER quantitative CT patterns. Sixteen IPF patients underwent He DW-MRI and CT at baseline, and eleven patients had a 1-year follow-up DW-MRI.

View Article and Find Full Text PDF

Rationale And Objectives: Idiopathic Pulmonary Fibrosis (IPF) is a progressive interstitial lung disease characterised by heterogeneously distributed fibrotic lesions. The inter- and intra-patient heterogeneity of the disease has meant that useful biomarkers of severity and progression have been elusive. Previous quantitative computed tomography (CT) based studies have focussed on characterising the pathological tissue.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is characterised by progressive fibrosing interstitial pneumonia with an associated irreversible decline in lung function and quality of life. IPF prevalence increases with age, appearing most frequently in patients aged > 50 years. Pulmonary vessel-like volume (PVV) has been found to be an independent predictor of mortality in IPF and other interstitial lung diseases, however its estimation can be impacted by artefacts associated with image segmentation methods and can be confounded by adjacent fibrosis.

View Article and Find Full Text PDF

Objectives: To evaluate quantitative computed tomography (QCT) features and QCT feature-based machine learning (ML) models in classifying interstitial lung diseases (ILDs). To compare QCT-ML and deep learning (DL) models' performance.

Methods: We retrospectively identified 1085 patients with pathologically proven usual interstitial pneumonitis (UIP), nonspecific interstitial pneumonitis (NSIP), and chronic hypersensitivity pneumonitis (CHP) who underwent peri-biopsy chest CT.

View Article and Find Full Text PDF

Purpose: To investigate the correlations between densitometric and Computer Aided Lung Informatics for Pathology Evaluation and Rating (CALIPER)-derived indices of pulmonary emphysema and their change in the short-term period for groups of patients with different smoking habits.

Method: This retrospective study included 284 subjects from the ITALUNG trial (198 men and 86 women; mean±sd age 60±4 years) who underwent low-dose chest computed tomography at baseline and 2-year follow-up. Subjects were divided into four groups (persistent smokers, restarters, quitters and former smokers) according to their smoking habit at baseline and follow-up.

View Article and Find Full Text PDF

Introduction: Computer-Aided Lung Informatics for Pathology Evaluation and Ratings (CALIPER) software has already been widely used in the evaluation of interstitial lung diseases (ILD) but has not yet been tested in patients affected by COVID-19. Our aim was to use it to describe the relationship between Coronavirus Disease 2019 (COVID-19) outcome and the CALIPER-detected pulmonary vascular-related structures (VRS).

Materials And Methods: We performed a multicentric retrospective study enrolling 570 COVID-19 patients who performed a chest CT in emergency settings in two different institutions.

View Article and Find Full Text PDF

A usual interstitial pneumonia (UIP) imaging pattern can be seen in both idiopathic pulmonary fibrosis (IPF) and connective tissue disease-related interstitial lung disease (CTD-ILD). The purpose of this multicenter study was to assess whether quantitative imaging data differ between IPF and CTD-ILD in the setting of UIP. Patients evaluated at two medical centers with CTD-ILD or IPF and a UIP pattern on CT or pathology served as derivation and validation cohorts.

View Article and Find Full Text PDF

Objectives: To determine if a quantitative imaging variable (vessel-related structures [VRS]) could identify subjects with a non-IPF diagnosis CT pattern who were highly likely to have UIP histologically.

Methods: Subjects with a multidisciplinary diagnosis of interstitial lung disease including surgical lung biopsy and chest CT within 1 year of each other were included in the study. Non-contrast CT scans were analyzed using the Computer-Aided Lung Informatics for Pathology Evaluation and Rating (CALIPER) program, which quantifies the amount of various abnormal CT patterns on chest CT.

View Article and Find Full Text PDF

Introduction: Implementation of low-dose chest computed tomography (CT) lung cancer screening and the ever-increasing use of cross-sectional imaging are resulting in the identification of many screen- and incidentally detected indeterminate pulmonary nodules. While the management of nodules with low or high pre-test probability of malignancy is relatively straightforward, those with intermediate pre-test probability commonly require advanced imaging or biopsy. Noninvasive risk stratification tools are highly desirable.

View Article and Find Full Text PDF

This study aimed to determine diagnostic and prognostic differences in major forms of interstitial lung disease using quantitative CT imaging. A retrospective study of 225 subjects with a multidisciplinary diagnosis of idiopathic pulmonary fibrosis (IPF), interstitial pneumonia with autoimmune features (IPAF), connective tissue disease (CTD), or chronic hypersensitivity pneumonitis (cHP) was conducted. Non-contrast CT scans were analyzed using the Computer Aided Lung Informatics for Pathology Evaluation and Rating (CALIPER) program.

View Article and Find Full Text PDF

Despite multiple recent advances, the diagnosis and management of lung cancer remain challenging and it continues to be the deadliest malignancy. In 2011, the National Lung Screening Trial (NLST) reported 20% reduction in lung cancer related mortality using annual low dose chest computed tomography (CT). These results led to the approval and nationwide establishment of lung cancer CT-based lung cancer screening programs.

View Article and Find Full Text PDF

Purpose: To investigate the role of a quantitative analysis software (CALIPER) in identifying HRCT thresholds predicting IPF patients' survival and lung function decline and its role in detecting changes of HRCT abnormalities related to treatment and their correlation with Forced Vital Capacity (FVC).

Methods: This retrospective study included 105 patients with a multidisciplinary diagnosis of IPF for whom one HRCT at baseline and concomitant FVC were available. HRCTs were evaluated with CALIPER and the correlation between FVC and radiological features were assessed.

View Article and Find Full Text PDF

Objectives: To test HRCT with either visual or quantitative analysis in both short-term and long-term follow-up of stable IPF against long-term (transplant-free) survival, beyond 2 years of disease stability.

Methods: Fifty-eight IPF patients had FVC measurements and HRCTs at baseline (HRCT0), 10-14 months (HRCT1) and 22-26 months (HRCT2). Visual scoring, CALIPER quantitative analysis of HRCT measures, and their deltas were evaluated against combined all-cause mortality and lung transplantation by adjusted Cox proportional hazard models at each time interval.

View Article and Find Full Text PDF

Quantitative analysis of thin-section CT of the chest has a growing role in the clinical evaluation and management of diffuse lung diseases. This heterogeneous group includes diseases with markedly different prognoses and treatment options. Quantitative tools can assist in both accurate diagnosis and longitudinal management by improving characterization and quantification of disease and increasing the reproducibility of disease severity assessment.

View Article and Find Full Text PDF

Background: The mechanisms underlying airflow obstruction in COPD cannot be distinguished by standard spirometry. We ascertain whether mathematical modeling of airway biomechanical properties, as assessed from spirometry, could provide estimates of emphysema presence and severity, as quantified by computed tomography (CT) metrics and CT-based radiomics.

Methods: We quantified presence and severity of emphysema by standard CT metrics (VIDA) and co-registration analysis (ImbioLDA) of inspiratory-expiratory CT in 194 COPD patients who underwent pulmonary function testing.

View Article and Find Full Text PDF

Objective: Most computed tomography (CT)-detected lung cancers are adenocarcinomas (ACs), representing lesions with variable tissue invasion, aggressiveness, and clinical outcome. Visual radiologic characterization of AC pulmonary nodules is both inconsistent and inadequate to confidently predict histopathologic classification or prognosis. Comprehensive pathologic interpretation requires full nodule resection.

View Article and Find Full Text PDF

Background: During proctography, rectal emptying is visually estimated by the reduction in rectal area. The correlation between changes in rectal area, which is a surrogate measure of volume, is unclear. Our aims were to compare the change in rectal area and volume during magnetic resonance (MR) proctography and to compare these parameters with rectal balloon expulsion time (BET).

View Article and Find Full Text PDF

The aim of this study was to compare radiology-based prediction models in rheumatoid arthritis-related interstitial lung disease (RAILD) to identify patients with a progressive fibrosis phenotype.RAILD patients had computed tomography (CT) scans scored visually and using CALIPER and forced vital capacity (FVC) measurements. Outcomes were evaluated using three techniques, as follows.

View Article and Find Full Text PDF
Article Synopsis
  • The text references a correction made to a specific research article identified by its DOI number 10.1371/journal.pone.0196910.!
  • This correction likely addresses errors or clarifications in the original publication.!
  • Readers should consult the updated version for accurate information and conclusions related to the study. !
View Article and Find Full Text PDF

The majority of incidentally and screen-detected lung cancers are adenocarcinomas. Optimal management of these tumors is clinically challenging due to variability in tumor histopathology and behavior. Invasive adenocarcinoma (IA) is generally aggressive while adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) may be extremely indolent.

View Article and Find Full Text PDF

Purpose: Optimal strategies to detect early interstitial lung disease (ILD) are unknown. ILD is frequently subpleural in distribution and affects lung elasticity. Lung ultrasound surface wave elastography (LUSWE) is a noninvasive method of quantifying superficial lung tissue elastic properties.

View Article and Find Full Text PDF

Lung adenocarcinoma (ADC), the most common lung cancer type, is recognized increasingly as a disease spectrum. To guide individualized patient care, a non-invasive means of distinguishing indolent from aggressive ADC subtypes is needed urgently. Computer-Aided Nodule Assessment and Risk Yield (CANARY) is a novel computed tomography (CT) tool that characterizes early ADCs by detecting nine distinct CT voxel classes, representing a spectrum of lepidic to invasive growth, within an ADC.

View Article and Find Full Text PDF

Purpose: Optimization of the clinical management of screen-detected lung nodules is needed to avoid unnecessary diagnostic interventions. Herein we demonstrate the potential value of a novel radiomics-based approach for the classification of screen-detected indeterminate nodules.

Material And Methods: Independent quantitative variables assessing various radiologic nodule features such as sphericity, flatness, elongation, spiculation, lobulation and curvature were developed from the NLST dataset using 726 indeterminate nodules (all ≥ 7 mm, benign, n = 318 and malignant, n = 408).

View Article and Find Full Text PDF