Publications by authors named "Ronald K Liem"

Cytoskeletal Integrators: The Spectrin Superfamily.

Cold Spring Harb Perspect Biol

October 2016

This review discusses the spectrin superfamily of proteins that function to connect cytoskeletal elements to each other, the cell membrane, and the nucleus. The signature domain is the spectrin repeat, a 106-122-amino-acid segment comprising three α-helices. α-actinin is considered to be the ancestral protein and functions to cross-link actin filaments.

View Article and Find Full Text PDF

α-Internexin and peripherin are neuronal-specific intermediate filament (IF) proteins. α-Internexin is a type IV IF protein like the neurofilament triplet proteins (NFTPs, which include neurofilament light chain, neurofilament medium chain, and neurofilament high chain) that are generally considered to be the primary components of the neuronal IFs. However, α-internexin is often expressed together with the NFTPs and has been proposed as the fourth subunit of the neurofilaments in the central nervous system.

View Article and Find Full Text PDF

The cytoskeleton of most eukaryotic cells is composed of three principal filamentous components: actin filaments, microtubules (MTs), and intermediate filaments. It is a highly dynamic system that plays crucial roles in a wide range of cellular processes, including migration, adhesion, cytokinesis, morphogenesis, intracellular traffic and signaling, and structural flexibility. Among the large number of cytoskeleton-associated proteins characterized to date, microtubule-actin cross-linking factor 1 (MACF1) is arguably the most versatile integrator and modulator of cytoskeleton-related processes.

View Article and Find Full Text PDF

Charcot-Marie-Tooth disease (CMT) is the most commonly inherited neurological disorder with a prevalence of 1 in 2500 people worldwide. Patients suffer from degeneration of the peripheral nerves that control sensory information of the foot/leg and hand/arm. Multiple mutations in the neurofilament light polypeptide gene, NEFL, cause CMT2E.

View Article and Find Full Text PDF

Objective: Charcot-Marie-Tooth (CMT) disease is a group of inherited peripheral neuropathies associated with mutations or copy number variations in over 70 genes encoding proteins with fundamental roles in the development and function of Schwann cells and peripheral axons. Here, we used iPSC-derived cells to identify common pathophysiological mechanisms in axonal CMT.

Methods: iPSC lines from patients with two distinct forms of axonal CMT (CMT2A and CMT2E) were differentiated into spinal cord motor neurons and used to study axonal structure and function and electrophysiological properties in vitro.

View Article and Find Full Text PDF

BPAG1a and BPAG1b (BPAG1a/b) constitute two major isoforms encoded by the dystonin (Dst) gene and show homology with MACF1a and MACF1b. These proteins are members of the plakin family, giant multi-modular proteins able to connect the intermediate filament, microtubule and microfilament cytoskeletal networks with each other and to distinct cell membrane sites. They also serve as scaffolds for signaling proteins that modulate cytoskeletal dynamics.

View Article and Find Full Text PDF

A recent paper has identified the tumor suppressor APC as a linker protein between intermediate filaments and microtubules. In the absence of APC, intermediate filaments collapse and the cells are no longer polarized and fail to migrate.

View Article and Find Full Text PDF

Peripherin, a neuronal intermediate filament protein implicated in neurodegenerative disease, coexists with the neurofilament triplet proteins [neurofilament light (NFL), medium (NFM), and heavy (NFH) chain] but has an unknown function. The earlier peak expression of peripherin than the triplet during brain development and its ability to form homopolymers, unlike the triplet, which are obligate heteropolymers, have supported a widely held view that peripherin and neurofilament triplets form separate filament systems. However, here, we demonstrate that, despite a postnatal decline in expression, peripherin is as abundant as the triplet in the adult PNS and exists in a relatively fixed stoichiometry with these subunits.

View Article and Find Full Text PDF

The compartmental organization of eukaryotic cells is maintained dynamically by vesicular trafficking. SNARE proteins play a crucial role in intracellular membrane fusion and need to be targeted to their proper donor or acceptor membrane. The molecular mechanisms that allow for the secretory vesicles carrying the v-SNARE TI-VAMP/VAMP7 to leave the cell center, load onto microtubules, and reach the periphery to mediate exocytosis are largely unknown.

View Article and Find Full Text PDF

Essential tremor (ET) is among the most prevalent neurological diseases. A substantial increase in the number of Purkinje cell axonal swellings (torpedoes) has been identified in ET brains. We recently demonstrated that torpedoes in ET contain an over-accumulation of disorganized neurofilament (NF) proteins.

View Article and Find Full Text PDF

The microtubule-actin crosslinking factor 1 (MACF1) is a ubiquitous cytoskeletal linker protein with multiple spliced isoforms expressed in different tissues. The MACF1a isoform contains microtubule and actin-binding regions and is expressed at high levels in the nervous system. Macf1-/- mice are early embryonic lethal and hence the role of MACF1 in the nervous system could not be determined.

View Article and Find Full Text PDF

BPAG1-b is the major muscle-specific isoform encoded by the dystonin gene, which expresses various protein isoforms belonging to the plakin protein family with complex, tissue-specific expression profiles. Recent observations in mice with either engineered or spontaneous mutations in the dystonin gene indicate that BPAG1-b serves as a cytolinker important for the establishment and maintenance of the cytoarchitecture and integrity of striated muscle. Here, we studied in detail its distribution in skeletal and cardiac muscles and assessed potential binding partners.

View Article and Find Full Text PDF

The ultrastructural view of the axonal cytoskeleton as an extensively cross-linked network of neurofilaments (NFs) and other cytoskeletal polymers contrasts with the dynamic view suggested by axonal transport studies on cytoskeletal elements. Here we reconcile these perspectives by showing that neurons form a large NF network along axons which is unequivocally stationary, metabolically stable, and maintained by NFs and nonfilamentous subunit assemblies undergoing slow transport by intermittent rapid movements and pauses. In mouse primary cortical neurons transfected with EGFP-NFL, formation of this stationary NF network requires a critical level of NFs, which explains its absence in NF-poor developing neurons studied previously.

View Article and Find Full Text PDF

Intermediate filaments (IFs) are abundant structures found in most eukaryotic cells, including those in the nervous system. In the CNS, the primary components of neuronal IFs are alpha-internexin and the neurofilament triplet proteins. In the peripheral nervous system, a fifth neuronal IF protein known as peripherin is also present.

View Article and Find Full Text PDF

Alpha-internexin and the neurofilament triplet proteins (NF-L, NF-M, and NF-H) co-assemble into intermediate filament networks in neurons. We have found that the RE1 silencing transcription factor (REST) plays a contributory role in the neuron-specific expression of the alpha-internexin, NF-H and NF-M genes. Chromatin immunoprecipitation and transient transfection experiments performed with catecholaminergic neuronal Cath a.

View Article and Find Full Text PDF

Intermediate filaments (IFs) are found in most eukaryotic cells and are made up of various IF proteins. IFs are highly insoluble in conventional extraction buffers and are therefore commonly purified under denaturing condition. Purified IF proteins can be reassembled into filaments by dialysis.

View Article and Find Full Text PDF

Charcot-Marie-Tooth disease (CMT) is an inherited peripheral neuropathy that has been linked to mutations in multiple genes. Mutations in the neurofilament light (NFL) chain gene lead to the CMT2E form whereas mutations in the myotubularin-related protein 2 and 13 (MTMR2 and MTMR13) genes lead to the CMT4B form. These two forms share characteristic pathological hallmarks on nerve biopsies including concentric sheaths ('onion bulbs') and, in at least one case, myelin loops.

View Article and Find Full Text PDF

Plakins are large multi-domain molecules that have various functions to link cytoskeletal elements together and to connect them to junctional complexes. Plakins were first identified in epithelial cells where they were found to connect the intermediate filaments to desmosomes and hemidesmosomes [Ruhrberg, C., and Watt, F.

View Article and Find Full Text PDF

Protein accumulation is a hallmark of many neurodegenerative disorders. In Alzheimer's disease (AD), a hyperphosphorylated form of the protein tau (p-tau) forms intracellular inclusions known as neurofibrillary tangles. Deposits of p-tau have also been found in the brains of patients with Down's syndrome, supranuclear palsy, and prion disease.

View Article and Find Full Text PDF

Background: Giant axonal neuropathy (GAN) is a hereditary neurological disorder that affects both central and peripheral nerves. The main pathological hallmark of the disease is abnormal accumulations of intermediate filaments (IFs) in giant axons and other cell types. Mutations in the GAN gene, encoding gigaxonin, cause the disease.

View Article and Find Full Text PDF

Bullous pemphigoid antigen 1 (BPAG1) is a member of the plakin family of proteins. The plakins are multi-domain proteins that have been shown to interact with microtubules, actin filaments and intermediate filaments, as well as proteins found in cellular junctions. These interactions are mediated through different domains on the plakins.

View Article and Find Full Text PDF

Alpha-internexin, a neuronal intermediate filament protein implicated in neurodegenerative disease, coexists with the neurofilament (NF) triplet proteins (NF-L, NF-M, and NF-H) but has an unknown function. The earlier peak expression of alpha-internexin than the triplet during brain development and its ability to form homopolymers, unlike the triplet, which are obligate heteropolymers, have supported a widely held view that alpha-internexin and neurofilament triplet form separate filament systems. Here, we demonstrate, however, that despite a postnatal decline in expression, alpha-internexin is as abundant as the triplet in the adult CNS and exists in a relatively fixed stoichiometry with these subunits.

View Article and Find Full Text PDF

Recent studies have shown that mutations in neurofilament light subunit gene (NEFL) cause Charcot-Marie-Tooth (CMT) disease. Since the first description of the Gln333Pro mutation in the NEFL gene, 10 pathogenic mutations in the NEFL gene have been reported in patients affected with CMT disease. We report a novel I214M amino acid substitution in the NEFL gene in two unrelated patients affected with CMT.

View Article and Find Full Text PDF

MACF1 (microtubule actin cross-linking factor 1) is a multidomain protein that can associate with microfilaments and microtubules. We found that MACF1 was highly expressed in neuronal tissues and the foregut of embryonic day 8.5 (E8.

View Article and Find Full Text PDF