Publications by authors named "Ronald J Parry"

Article Synopsis
  • - Nitramines, like nitroglycine (NNG), are harmful contaminants from explosives that affect soil and groundwater, posing risks to ecosystems and human health.
  • - Researchers isolated a soil bacterium, sp. strain JS1663, capable of degrading NNG, identifying a key enzyme involved in this process which has a unique domain previously not associated with denitration.
  • - The findings on NNG biodegradation could lead to advancements in breaking down other nitramine explosives, aiding environmental remediation efforts.
View Article and Find Full Text PDF

Streptomyces vitaminophilus produces pyrrolomycins, which are halogenated polyketide antibiotics. Some of the pyrrolomycins contain a rare nitro group located on the pyrrole ring. The 6.

View Article and Find Full Text PDF

Plant-pathogenic Streptomyces spp. cause scab disease on economically important root and tuber crops, the most important of which is potato. Key virulence determinants produced by these species include the cellulose synthesis inhibitor, thaxtomin A, and the secreted Nec1 protein that is required for colonization of the plant host.

View Article and Find Full Text PDF

Streptomyces antibiotic regulatory proteins (SARPs) have been shown to activate transcription by binding to a tandemly arrayed set of heptameric direct repeats located around the -35 region of their cognate promoters. Experimental evidence is presented here showing that vlmI is a regulatory gene in the valanimycin biosynthetic gene cluster of Streptomyces viridifaciens and encodes a protein belonging to the SARP family. The organization of the valanimycin biosynthetic gene cluster suggests that the valanimycin biosynthetic genes are located on three potential transcripts, vlmHORBCD, vlmJKL and vlmA.

View Article and Find Full Text PDF

Thaxtomin A, a cyclic dipeptide with a nitrated tryptophan moiety, is a phytotoxic pathogenicity determinant in scab-causing Streptomyces species that inhibits cellulose synthesis by an unknown mechanism. Thaxtomin A is produced by the action of two non-ribosomal peptide synthetase modules (TxtA and TxtB) and a complement of modifying enzymes, although the order of biosynthesis has not yet been determined. Analysis of a thaxtomin dual module knockout mutant and single module knockout mutants revealed that 4-nitrotryptophan is an intermediate in thaxtomin A biosynthesis prior to backbone assembly.

View Article and Find Full Text PDF

The antibiotic valanimycin is a naturally occurring azoxy compound isolated from Streptomyces viridifaciens. Detailed investigations have shown that valanimycin is derived from L-valine and L-serine via the intermediacy of O-(L-seryl)isobutylhydroxylamine. Sequence analysis of the valanimycin biosynthetic genes provides relatively few clues concerning the nature of the later stages of the pathway.

View Article and Find Full Text PDF

The antibiotic valanimycin is a naturally occurring azoxy compound produced by Streptomyces viridifaciens MG456-hF10. Precursor incorporation experiments showed that valanimycin is derived from l-valine and l-serine via the intermediacy of isobutylamine and isobutylhydroxylamine. Enzymatic and genetic investigations led to the cloning and sequencing of the valanimycin biosynthetic gene cluster, which was found to contain 14 genes.

View Article and Find Full Text PDF

The antibiotics lactonamycin and lactonamycin Z provide attractive leads for antibacterial drug development. Both antibiotics contain a novel aglycone core called lactonamycinone. To gain insight into lactonamycinone biosynthesis, cloning and precursor incorporation experiments were undertaken.

View Article and Find Full Text PDF

The pyrrolomycins are a family of polyketide antibiotics, some of which contain a nitro group. To gain insight into the nitration mechanism associated with the formation of these antibiotics, the pyrrolomycin biosynthetic gene cluster from Actinosporangium vitaminophilum was cloned. Sequencing of ca.

View Article and Find Full Text PDF

Previous studies have shown that the valanimycin producer Streptomyces viridifaciens contains two genes encoding proteins that are similar to seryl-tRNA synthetases (SerRSs). One of these proteins (SvsR) is presumed to function in protein biosynthesis, because it exhibits a high degree of similarity to the single SerRS of Streptomyces coelicolor. The second protein (VlmL), which exhibits a low similarity to the S.

View Article and Find Full Text PDF

The 4'-phosphopantetheinyl transferases (PPTases) catalyze the transfer of a 4'-phosphopantetheine moiety from coenzyme A to phosphopantetheine-dependent carrier proteins. The carrier proteins (CPs) are required for the biosynthesis of peptides synthesized by nonribosomal peptide synthases and the biosynthesis of fatty acids and polyketides. A single PPTase (PcpS) is present in the pathogenic bacterium Pseudomonas aeruginosa.

View Article and Find Full Text PDF

The prodiginine antibiotics exhibit antitumor and immunosuppressive activity. In this issue of Chemistry & Biology, Reynolds and coworkers demonstrate that new prodiginines can be obtained by substituting a FabH ketosynthase for the RedP ketosynthase in the undecylprodiginine biosynthetic gene cluster.

View Article and Find Full Text PDF

Bacterial nitric-oxide synthase proteins (NOSs) from certain Streptomyces strains have been shown to participate in biosynthetic nitration of tryptophanyl moieties in vivo (Kers, J. A., Wach, M.

View Article and Find Full Text PDF

Cfa1 was overproduced in Escherichia coli and Pseudomonas syringae, and the degree of 4'-phosphopantetheinylation was determined. The malonyl-coenzyme A:acyl carrier protein transacylase (FabD) of P. syringae was overproduced and shown to catalyze malonylation of Cfa1, suggesting that FabD plays a role in coronatine biosynthesis.

View Article and Find Full Text PDF

[reaction: see text] The incorporation of [(15)N, (18)O]-isobutylhydroxylamine into the antibiotic valanimycin by Streptomyces viridifaciens has been shown to proceed with loss of the (18)O label, thereby demonstrating that the azoxy oxygen atom of valanimycin is not derived from the oxygen atom of isobutylhydroxylamine.

View Article and Find Full Text PDF

Streptomyces viridifaciens MG456-hF10 produces the antibiotic valanimycin, a naturally occurring azoxy compound. Valanimycin is known to be derived from valine and serine with the intermediacy of isobutylamine and isobutylhydroxylamine, but little is known about the stages in the pathway leading to the formation of the azoxy group. In previous studies, a cosmid containing S.

View Article and Find Full Text PDF

Uracil phosphoribosyltransferase (UPRT) is a member of a large family of salvage and biosynthetic enzymes, the phosphoribosyltransferases, and catalyzes the transfer of ribose 5-phosphate from alpha-d-5-phosphoribosyl-1-pyrophosphate (PRPP) to the N1 nitrogen of uracil. The UPRT from the opportunistic pathogen Toxoplasma gondii represents a promising target for rational drug design, because it can create intracellular, lethal nucleotides from subversive substrates. However, the development of such compounds requires a detailed understanding of the catalytic mechanism.

View Article and Find Full Text PDF

A novel valanimycin-resistance determinant (vImF) was isolated from a cosmid containing Streptomyces viridifaciens DNA that leads to valanimycin production in Streptomyces lividans. Expression of the vImF gene in both Escherichia coli and S. lividans provided valanimycin resistance.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiong13nbf4lsn80k4avcppl11o7ufjfg1sb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once