Publications by authors named "Ronald J Lukas"

Background And Purpose: Oligomeric amyloid β (oAβ) exhibits agonist-like action at human α7- and α7β2-containing nicotinic receptors. The N-terminal amyloid β fragment (N-Aβ fragment) modulates presynaptic calcium and enhances hippocampal-based synaptic plasticity via α7-containing nicotinic receptors. Further, the N-Aβ fragment and its core sequence, the N-amyloid-beta core hexapeptide (N-Aβcore), protect against oAβ-associated synapto- and neurotoxicity.

View Article and Find Full Text PDF

Nicotine, a major component of tobacco, is highly addictive and acts on nicotinic acetylcholine receptors (nAChRs) to stimulate reward-associated circuits in the brain. It is well known that nAChRs play critical roles in mediating nicotine reward and addiction. Current FDA-approved medications for smoking cessation are the antidepressant bupropion and the nicotinic partial agonist varenicline, yet both are limited by adverse side effects and moderate efficacy.

View Article and Find Full Text PDF

Sleep-related hypermotor epilepsy (SHE) is a group of seizure disorders prominently associated with mutations in nicotinic acetylcholine receptors (nAChR). The most prevalent central nervous system nAChR subtype contains α4 and β2 subunits, in two ratios. (α4β2)2β2-nAChR have high agonist sensitivity (HS-isoform), whereas (α4β2)2α4-nAChR agonist responses exhibit a small high-sensitivity, and a predominant low-sensitivity, phase of function (LS-isoform).

View Article and Find Full Text PDF

Neuronal and network-level hyperexcitability is commonly associated with increased levels of amyloid-β (Aβ) and contribute to cognitive deficits associated with Alzheimer's disease (AD). However, the mechanistic complexity underlying the selective loss of basal forebrain cholinergic neurons (BFCNs), a well-recognized characteristic of AD, remains poorly understood. In this study, we tested the hypothesis that the oligomeric form of amyloid-β (oAβ), interacting with α7-containing nicotinic acetylcholine receptor (nAChR) subtypes, leads to subnucleus-specific alterations in BFCN excitability and impaired cognition.

View Article and Find Full Text PDF

Experimental autoimmune encephalomyelitis (EAE) is attenuated in nicotinic acetylcholine receptor (nAChR) α9 subunit knock-out (α9 KO) mice. However, protection is incomplete, raising questions about roles for related, nAChR α10 subunits in ionotropic or recently-revealed metabotropic contributions to effects. Here, we demonstrate reduced EAE severity and delayed onset of disease signs in nAChR α9/α10 subunit double knock-out (DKO) animals relative to effects in wild-type (WT) control mice.

View Article and Find Full Text PDF

Cocaine is one of the most abused illicit drugs worldwide. It is well known that the dopamine (DA) transporter is its major target; but cocaine also acts on other targets including nicotinic acetylcholine receptors (nAChRs). In this study, we investigated the effects of cocaine on a special subtype of neuronal nAChR, αβ-nAChR expressed in native SH-SY5Y cells.

View Article and Find Full Text PDF

Central nervous system nicotinic acetylcholine receptors (nAChR) are predominantly of the α4β2 subtype. Two isoforms exist, with high or low agonist sensitivity (HS-(α4β2)2β2- and LS-(α4β2)2α4-nAChR). Both isoforms exhibit similar macroscopic potency and efficacy values at low acetylcholine (ACh) concentrations, mediated by a common pair of high-affinity α4(+)/(-)β2 subunit binding interfaces.

View Article and Find Full Text PDF

Alcohol use disorder (AUD) is a serious public health problem that results in tremendous social, legal and medical costs to society. Unlike other addictive drugs, there is no specific molecular target for ethanol (EtOH). Here, we report a novel molecular target that mediates EtOH effects at concentrations below those that cause legally-defined inebriation.

View Article and Find Full Text PDF

Background and Purpose- Tobacco cigarette smoking is considered to be a strong risk factor for intracranial aneurysmal rupture. Nicotine is a major biologically active constituent of tobacco products. Nicotine's interactions with vascular cell nicotinic acetylcholine receptors containing α7 subunits (α7*-nAChR) are thought to promote local inflammation and sustained angiogenesis.

View Article and Find Full Text PDF

Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels that play a central role in neuronal and neuromuscular signal transduction. Here, we have developed FANG ligands, fibronectin antibody-mimetic nicotinic acetylcholine receptor-generated ligands, using mRNA display. We generated a 1 trillion-member primary e10FnIII library to target a stabilized α1 nicotinic subunit (α211).

View Article and Find Full Text PDF

Neuronal nicotinic acetylcholine receptors containing α6 subunits (α6-nAChRs) show highly restricted distribution in midbrain neurons associated with pleasure, reward, and mood control, suggesting an important impact of α6-nAChRs in modulating mesolimbic functions. However, the function and pharmacology of α6-nAChRs remain poorly understood because of the lack of selective agonists for α6-nAChRs and the challenging heterologous expression of functional α6-nAChRs in mammalian cell lines. In particular, the α6 subunit is commonly co-expressed with α4-nAChRs in the midbrain, which masks α6-nAChR (without α4) function and pharmacology.

View Article and Find Full Text PDF

Previous studies have demonstrated immunosuppressive and anti-inflammatory effects of nicotine, including in the experimental autoimmune encephalomyelitis (EAE) model in mice of some forms of multiple sclerosis (MS). Other studies using knock-out (KO) mice have implicated nicotinic acetylcholine (ACh) receptors containing α7, α9, or β2 subunits (α7*-, α9*- or β2*-nAChR) in different, disease-exacerbating or disease-ameliorating processes. These outcomes are in harmony with gene expression analyses showing nAChR subunit mRNA in many classes of immune system cell types.

View Article and Find Full Text PDF

This study investigates-for the first time to our knowledge-the existence and mechanisms of functional interactions between the endogenous mammalian prototoxin, lynx1, and α3- and β4-subunit-containing human nicotinic acetylcholine receptors (α3β4*-nAChRs). Concatenated gene constructs were used to express precisely defined α3β4*-nAChR isoforms (α3β4)β4-, (α3β4)α3-, (α3β4)α5(398D)-, and (α3β4)α5(398N)-nAChR in oocytes. In the presence or absence of lynx1, α3β4*-nAChR agonist responses were recorded by using 2-electrode voltage clamp and single-channel electrophysiology, whereas radioimmunolabeling measured cell-surface expression.

View Article and Find Full Text PDF

We previously reported the cyclopropylpyridine and isoxazolylpyridine ether scaffolds to be versatile building blocks for creating potent α4β2 nicotinic acetylcholine receptor (nAChR) partial agonists with excellent selectivity over the α3β4 subtype. In our continued efforts to develop therapeutic nicotinic ligands, seven novel hybrid compounds were rationally designed, synthesized, and evaluated in [H]epibatidine binding competition studies. Incorporation of a cyclopropane- or isoxazole-containing side chain onto the 5-position of 1-(pyridin-3-yl)-1,4-diazepane or 2-(pyridin-3-yl)-2,5-diazabicyclo[2.

View Article and Find Full Text PDF

Avermectins are a group of compounds isolated from a soil-dwelling bacterium. They have been widely used as parasiticides and insecticides, acting by relatively irreversible activation of invertebrate chloride channels. Emamectin is a soluble derivative of an avermectin.

View Article and Find Full Text PDF

We report the synthesis and biological characterization of novel derivatives of 3-[(1-methyl-2(S)-pyrrolidinyl)methoxy]-5-cyclopropylpyridine (4a-f and 5) as potent and highly selective α4β2-nicotinic acetylcholine receptor (nAChR) full or partial agonists. A systematic structure-activity study was carried out on the previously described compound 3b, particularly concerning its (2-methoxyethyl)cyclopropyl side-chain, in an effort to improve its metabolic stability while maintaining receptor selectivity. Compound 4d exhibited very similar subnanomolar binding affinity for α4β2- and α4β2*-nAChRs compared to 3b, and it showed excellent potency in activating high-sensitivity (HS) α4β2-nAChRs with an EC50 value of 8.

View Article and Find Full Text PDF

Two α4β2 nicotinic acetylcholine receptor (α4β2-nAChR) isoforms exist with (α4)2(β2)3 and (α4)3(β2)2 subunit stoichiometries and high versus low agonist sensitivities (HS and LS), respectively. Both isoforms contain a pair of α4(+)/(-)β2 agonist-binding sites. The LS isoform also contains a unique α4(+)/(-)α4 site with lower agonist affinity than the α4(+)/(-)β2 sites.

View Article and Find Full Text PDF

Previously characterized nicotinic acetylcholine receptor (nAChR) autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE)-associated mutations are found in α2, α4 and β2 subunit transmembrane (TM) domains. They predominantly increase ACh potency and, for β2-subunit mutants, increase macroscopic currents. Two recently-identified mutations, α4(R336H) and β2(V337G), located in the intracellular cytoplasmic loop (C2) have been associated with non-familial NFLE.

View Article and Find Full Text PDF

The α7nicotinic receptor (nAChR) is a major subtype of the nAChRs in the central nervous system, and the receptor plays an important role in brain function. In the dbSNP database, there are 55 single nucleotide polymorphisms (SNPs) that cause missense mutations of the human α7nAChR in the coding region. In this study, we tested the impact of 14 SNPs that cause missense mutations in the agonist binding site or the coupling region between binding site and channel gate on the receptor function.

View Article and Find Full Text PDF

The α7-nicotinic acetylcholine receptor (α7-nAChR) is a ligand-gated ion channel widely expressed in vertebrates and is associated with numerous physiological functions. As transmembrane ion channels, α7-nAChRs need to be expressed on the surface of the plasma membrane to function. The receptor has been reported to associate with proteins involved with receptor biogenesis, modulation of receptor properties, as well as intracellular signaling cascades and some of these associated proteins may affect surface expression of α7-nAChRs.

View Article and Find Full Text PDF

Preclinical and clinical studies demonstrated that the inhibition of cholinergic supersensitivity through nicotinic antagonists and partial agonists can be used successfully to treat depressed patients, especially those who are poor responders to selective serotonin reuptake inhibitors (SSRIs). In our effort to develop novel antidepressant drugs, LF-3-88 was identified as a potent nicotinic acetylcholine receptor (nAChR) partial agonist with subnanomolar to nanomolar affinities for β2-containing nAChRs (α2β2, α3β2, α4β2, and α4β2*) and superior selectivity away from α3β4 - (K i > 10(4) nmol/L) and α7-nAChRs (K i > 10(4) nmol/L) as well as 51 other central nervous system (CNS)-related neurotransmitter receptors and transporters. Functional activities at different nAChR subtypes were characterized utilizing (86)Rb(+) ion efflux assays, two-electrode voltage-clamp (TEVC) recording in oocytes, and whole-cell current recording measurements.

View Article and Find Full Text PDF

We report the synthesis and characterization of a series of enantiopure 5-cyclopropane-bearing pyridyldiazabicyclo[3.3.0]octanes that display low nanomolar binding affinities and act as functional agonists at α4β2-nicotinic acetylcholine receptor (nAChR) subtype.

View Article and Find Full Text PDF

Functional heterologous expression of naturally expressed mouse α6*-nicotinic acetylcholine receptors (mα6*-nAChRs; where "*" indicates the presence of additional subunits) has been difficult. Here we expressed and characterized wild-type (WT), gain-of-function, chimeric, or gain-of-function chimeric nAChR subunits, sometimes as hybrid nAChRs containing both human (h) and mouse (m) subunits, in Xenopus oocytes. Hybrid mα6mβ4hβ3- (∼ 5-8-fold) or WT mα6mβ4mβ3-nAChRs (∼ 2-fold) yielded higher function than mα6mβ4-nAChRs.

View Article and Find Full Text PDF

We examined α7β2-nicotinic acetylcholine receptor (α7β2-nAChR) expression in mammalian brain and compared pharmacological profiles of homomeric α7-nAChRs and α7β2-nAChRs. α-Bungarotoxin affinity purification or immunoprecipitation with anti-α7 subunit antibodies (Abs) was used to isolate nAChRs containing α7 subunits from mouse or human brain samples. α7β2-nAChRs were detected in forebrain, but not other tested regions, from both species, based on Western blot analysis of isolates using β2 subunit-specific Abs.

View Article and Find Full Text PDF

Nicotinic acetylcholine receptors (nAChRs) have been investigated for developing drugs that can potentially treat various central nervous system disorders. Considerable evidence supports the hypothesis that modulation of the cholinergic system through activation and/or desensitization/inactivation of nAChR holds promise for the development of new antidepressants. The introductory portion of this Miniperspective discusses the basic pharmacology that underpins the involvement of α4β2-nAChRs in depression, along with the structural features that are essential to ligand recognition by the α4β2-nAChRs.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionlnd02a7vi5tvvvcn24snavjept4o01g1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once