This study investigated the first-ever reported use of freshwater Nannochloropsis for the bioremediation of dairy processing side streams and co-generation of valuable products, such as β-galactosidase enzyme. In this study, N. limnetica was found to grow rapidly on both autoclaved and non-autoclaved whey-powder media (referred to dairy processing by-product or DPBP) without the need of salinity adjustment or nutrient additions, achieving a biomass concentration of 1.
View Article and Find Full Text PDFAcid-casein production generates waste streams that are rich in nitrogen (in the form of protein and nitrate) and phosphate. This makes this type of waste very difficult to treat using conventional techniques resulting in a high amount of operating cost and costly investment. In this research, the application of single culture or consortium of microalgae for uptake of nitrogen and phosphate in the wastewater of an acid-casein factory was investigated.
View Article and Find Full Text PDFNovel cell-disruption combinations (autolytic incubation and hypotonic osmotic shock combined with HPH or pH12) were used to investigate the fundamental mass transfer of lipids and proteins from Nannochloropsis slurries (140 mg biomass/g slurry). Since neutral lipids exist as cytosolic globules, their mass transfer was directly dependent on disintegration of cell walls. Complete recovery was obtained with complete physical disruption.
View Article and Find Full Text PDFNitrogen-deprived Nannochloropsis cells invested their fixed carbon into the accumulation of triacylglycerol and cell wall cellulose (thickness of N-replete cell walls = 27.8 ± 5.8, N-deplete cell walls = 51.
View Article and Find Full Text PDFA single-step method for transesterifying and recovering lipids in concentrated slurries (ca 20% w/w solids) of ruptured microalgae is presented. A soluble Rhizomucor miehei lipase (RML) was used to directly transesterify the lipids in the marine microalgae Nannochloropsis salina. This allowed both triglycerides (TAG) and polar saponifiable lipids to be recovered as fatty acid methyl esters (FAME) using a nonpolar solvent (hexane).
View Article and Find Full Text PDFCell disruption is an integral part of the downstream operation required to produce biodiesel from microalgae. This study investigated the use of ultrasonication and high-pressure homogenization (HPH) as cell disruption methods for two microalgal species, Tetraselmis suecica (TS) and Chlorococcum sp. (C sp.
View Article and Find Full Text PDFThe rapid increase of CO(2) concentration in the atmosphere combined with depleted supplies of fossil fuels has led to an increased commercial interest in renewable fuels. Due to their high biomass productivity, rapid lipid accumulation, and ability to survive in saline water, microalgae have been identified as promising feedstocks for industrial-scale production of carbon-neutral biodiesel. This study examines the principles involved in lipid extraction from microalgal cells, a crucial downstream processing step in the production of microalgal biodiesel.
View Article and Find Full Text PDFThis study examines the performance of supercritical carbon dioxide (SCCO(2)) extraction and hexane extraction of lipids from marine Chlorococcum sp. for lab-scale biodiesel production. Even though the strain of Chlorococcum sp.
View Article and Find Full Text PDF