Publications by authors named "Ronald Haines"

The nucleofugality of dimethyl sulfide was measured in solvent mixtures containing ionic liquids. The first-order rate constants of the solvolysis of sulfonium salts were determined in mixtures containing different proportions of 1-butyl-3-methylimidazolium (trifluoromethanesulfonyl)imide in ethanol, representing the first report on the solvolysis of a charged species in an ionic liquid. Temperature-dependent kinetic studies allowed determination of activation parameters and rationalization of observed solvent effects in different ionic liquid mixtures.

View Article and Find Full Text PDF
Article Synopsis
  • A new qPCR test has been developed to identify 22 bacterial species linked to bacterial vaginosis (BV), addressing the limitations of current tests that focus on only a few species.
  • The test was applied to 946 stored vaginal samples and showed 95-100% sensitivity and specificity, accurately classifying samples as BV-positive, BV-negative, or transitional BV within 8 hours.
  • Findings revealed varying abundances of specific species among the samples and highlighted that while BV status fluctuated across different demographics, differences were statistically insignificant.
View Article and Find Full Text PDF

The nucleofugality of bromide was measured in solvent mixtures containing ionic liquids. The solvolysis rate constants of the bromides of well-defined electrofuges were determined in mixtures containing different proportions of 1-butyl-3-methylimidazolium (trifluoromethanesulfonyl)imide in ethanol. Temperature-dependent kinetic studies allowed an explanation of the observed solvent effects in different mixtures in terms of interactions in solution.

View Article and Find Full Text PDF

The reaction of a chlorobenzene in mixtures containing ethanol and eight different ionic liquids was investigated in order to understand the effects of varying proportions and constituent ions of an ionic liquid on the rate constant of the process. The results were found to be generally consistent with previously studied reactions of the same type, with small proportions of an ionic liquid resulting in a rate constant increase compared to ethanol and large proportions causing a rate constant decrease. Temperature dependent kinetic studies were used to interpret the changes in reaction outcome, particularly noting an entropic cost on moving to high proportions of ionic liquid, consistent with organisation of solvent around the transition state.

View Article and Find Full Text PDF

The nucleofugality of chloride has been measured in solvent mixtures containing ionic liquids for the first time, allowing reactivity in these solvents to be put in context with molecular solvents. Using well-described electrofuges, solvolysis rate constants were determined in mixtures containing different proportions of ethanol and the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide; the different solvent effects observed as the mixture changed could be explained using interactions of the ionic liquid with species along the reaction coordinate, determined using temperature dependent kinetic studies. The solvolysis data allowed determination of the nucleofugality of chloride in these mixtures, which varied with the proportion of salt in the reaction mixture, demonstrating quantitatively the importance of the amount of ionic liquid in the reaction mixture in determining reaction outcome.

View Article and Find Full Text PDF

Rate constants for a bimolecular nucleophilic substitution (SN2) process in a range of ionic liquids are correlated with calculated parameters associated with the charge localisation on the cation of the ionic liquid (including the molecular electrostatic potential). Simple linear regression models proved effective, though the interdependency of the descriptors needs to be taken into account when considering generality. A series of ionic liquids were then prepared and evaluated as solvents for the same process; this data set was rationally chosen to incorporate homologous series (to evaluate systematic variation) and functionalities not available in the original data set.

View Article and Find Full Text PDF

A homologous series of biscationic ionic liquids based on two imidazolium centres, separated by alkyl chains of varying length, were examined as solvents for a bimolecular substitution reaction across a range of proportions of ionic liquid in the reaction mixture. Their effects on the rate constant of the process were compared to monocationic ionic liquids, with generally a greater rate constant increase observed. Importantly, it was observed that the magnitude of the effect was shown to vary with the length of the linking chain.

View Article and Find Full Text PDF

The reactions of an acetobromogalactose in mixtures of methanol and one of seven different ionic liquids with varying constituent ions were studied. In general, small amounts of ionic liquid in the reaction mixture led to increases in the rate constant compared to methanol, whilst large amounts of ionic liquid led to decreases in the rate constant; this outcome differs significantly from previous reactions proceeding through this mechansim. Temperature dependent kinetic studies indicated that the dominant interaction driving these changes was between the ionic liquid and the transition state of the process.

View Article and Find Full Text PDF

Bimolecular nucleophilic substitution reactions between triphenylphosphine and benzylic electrophiles have been examined in an ionic liquid to probe interactions with species along the reaction coordinate. Trends in the rate constant were found on both varying the leaving group and the electronic nature of the aromatic ring. In all the cases considered, interactions between the components of the ionic liquid and the transition state were shown to be more significant in determining reaction outcome than previously observed for this class of reaction.

View Article and Find Full Text PDF

A series of nucleophiles containing Group 15 nucleophilic heteroatoms has been used to expand and develop the current understanding of ionic liquid solvent effects on bimolecular nucleophilic substitution processes. It was found that when using arsenic-, antimony- and bismuth-based nucleophiles, rate constant enhancement was observed for all solvent compositions containing ionic liquids. This rate constant enhancement was driven by ionic liquid/transition state interactions, which contrasts with previous studies on earlier Group 15 nucleophiles.

View Article and Find Full Text PDF

Nucleophilic aromatic substitution (S Ar) reactions of 1-fluoro-4-nitrobenzene using similar nitrogen and sulfur nucleophiles were studied through extensive kinetic analysis in mixtures containing ionic liquids. The interactions of the ionic liquid components with the starting materials and transition state for each process were investigated in an attempt to construct a broad predictive framework for how ionic liquids affect reaction outcome. It was found that, based on the activation parameters, the microscopic interactions and thus the ionic liquid solvent effect were different for each of the nucleophiles considered.

View Article and Find Full Text PDF

A unimolecular nucleophilic substitution reaction that proceeds through a xanthylium carbocation was studied in seven ionic liquid solvents. It was found that the general trend in the rate constant with changing proportion of ionic liquid in the reaction mixture was different to that seen for other unimolecular processes, with the rate constant increasing as more ionic liquid was added to the reaction mixture. A significant correlation was found between the natural logarithm of the rate constant and a combination of the Kamlet-Taft solvent parameters.

View Article and Find Full Text PDF

The effects of solvate ionic liquids as solvents have been considered for two substitution processes where the solvent effects of typical ionic liquids have been extensively investigated previously; the bimolecular nucleophilic substitution (SN2) reaction between pyridine and benzyl bromide and the nucleophilic aromatic substitution (SNAr) reaction between ethanol and 1-fluoro-2,4-dinitrobenzene. It was found that use of solvate ionic liquids gave rise to similar trends in the activation parameters for both substitution processes as typical ionic liquids, implying the microscopic interactions responsible for the effects were the same. However, different effects on the rate constants compared to typical ionic liquids were observed due to the changes in the balance of enthalpic and entropic contributions to the observed rate constants.

View Article and Find Full Text PDF

A unimolecular substitution process was studied in five different ionic liquids, with systematic variation of either the cation or anion, in order to determine the factors leading to the increase in the rate constant for the process relative to acetonitrile. It was found that both components of the ionic liquid, and the proportion of the salt in the reaction mixture, affect the rate constant. Activation parameters determined for the process suggest that there is a balance between interactions of the components of the ionic liquid with both starting material and transition state.

View Article and Find Full Text PDF

Correction for 'Rationalising the effects of ionic liquids on a nucleophilic aromatic substitution reaction' by Rebecca R. Hawker et al., Org.

View Article and Find Full Text PDF

A variety of ionic liquids, each containing the same cation but a different anion, were examined as solvents for a nucleophilic aromatic substitution reaction. Varying the proportion of ionic liquid was found to increase the rate constant as the mole fraction of ionic liquid increased demonstrating that the reaction outcome could be controlled through varying the ionic liquid. The solvent effects were correlated with the hydrogen bond accepting ability (β) of the ionic liquid anion allowing for qualitative prediction of the effect of changing this component of the solute.

View Article and Find Full Text PDF

A range of ionic liquids was examined as solvents for a substitution reaction. They were chosen through rationally varying the ionic liquid cation in order to enhance the rate constant. Access to charge and electron-withdrawing substituents benefitted rate enhancement, allowing ionic liquids to be rationally selected to control reaction outcome.

View Article and Find Full Text PDF

The nucleophilic aromatic substitution reaction between 1-fluoro-2,4-dinitrobenzene and ethanol was examined in a series of ionic liquids across a range of mole fractions. Temperature-dependent kinetic analyses were undertaken to determine the activation parameters for this reaction at the highest mole fraction. As the mole fraction of ionic liquid was increased, the rate constant of the reaction also increased, however the microscopic origin of the rate enhancement was shown to be different between different ionic liquids and also between different solvent compositions.

View Article and Find Full Text PDF

Simple Cope and Claisen rearrangements were investigated in an ionic liquid and a range of molecular solvents through a series of kinetic studies. Analysis of the solvent effects on the Cope rearrangement of 3-phenyl-1,5-hexadiene indicated that a solvophobic effect was responsible for the observed rate enhancement in the ionic liquid, and that this was due to preferential solvation of the transition state. A similar solvophobic effect contributes to the ionic liquid solvent effect on the Claisen rearrangement of allyl vinyl ether, although the ability of the ionic liquid to stabilise the incipient charges in the transition state also likely contributes to the rate increase observed in the ionic liquid solvent.

View Article and Find Full Text PDF

The reaction of bromodiphenylmethane and 3-chloropyridine, which proceeds concurrently through both unimolecular and bimolecular mechanisms, was examined in mixtures of acetonitrile and an ionic liquid. As predicted, the bimolecular rate constant (k2) gradually increased as the amount of ionic liquid in the reaction mixture increased, as a result of a minor enthalpic cost offset by a more significant entropic benefit. Addition of an ionic liquid had a substantial effect on the unimolecular rate constant (k1) of the reaction, with at least a 5-fold rate enhancement relative to acetonitrile, which was found to be due to a significant decrease in the enthalpy of activation, partially offset by the associated decrease in the entropy of activation.

View Article and Find Full Text PDF

The reaction of a series of substituted benzaldehydes with hexylamine was examined in acetonitrile and an ionic liquid. In acetonitrile, as the electron withdrawing nature of the substituent increases, the overall addition-elimination process becomes faster as does the build-up of the aminol intermediate. Under equivalent conditions in an ionic liquid, less intermediate build up is observed, and the effect on the rate on varying the substituent is different to that in acetonitrile.

View Article and Find Full Text PDF

A series of ionic liquids containing anions of differing coordination strength were investigated as solvents for the condensation reaction of an alkyl amine and an aromatic aldehyde. As predicted, the rate constant of the process was found to increase with the proportion of the ionic liquid in the reaction mixture. Temperature-dependent kinetic analyses demonstrated that by varying the ability of the anion to interact with the cation the magnitude of both the enthalpy and entropy of activation could be controlled in a predictable manner, with the activation parameters being linearly dependent on the ionic liquid basicity.

View Article and Find Full Text PDF

The effects of a series of ionic liquids, with systematic variations in the cation, on the condensation of an alkyl amine with an aromatic aldehyde were investigated, and the outcomes compared with those predicted based on related reactions. The addition of ionic liquids increased the observed rate constant; the mole fraction dependence of this increase was qualitatively consistent with predictions. Temperature-dependent kinetic analyses were used to demonstrate that the microscopic origins of the effects were as forecast, though the relative weighting of enthalpic and entropic contributions was dependent on the salt used.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0oqeugl5uk846c9soq21ib936jlo6ehp): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once