Publications by authors named "Ronald H Hoenig"

The (DWH) disaster released 3.19 million barrels of crude oil into the Gulf of Mexico (GOM) in 2010, overlapping the habitat of pelagic fish populations. Using mahi-mahi ()─a highly migratory marine teleost present in the GOM during the spill─as a model species, laboratory experiments demonstrate injuries to physiology and behavior following oil exposure.

View Article and Find Full Text PDF

Key differences in the developmental process of pelagic fish embryos, in comparison to embryos of standard test fish species, present challenges to obtaining sufficient control survival needed to successfully perform traditional toxicity testing bioassays. Many of these challenges relate to the change in buoyancy, from positive to negative, of pelagic fish embryos that occurs just prior to hatch. A novel exposure system, the pelagic embryo-larval exposure chamber (PELEC), has been developed to conduct successful bioassays on the early life stages (ELSs; embryos/larvae) of pelagic fish.

View Article and Find Full Text PDF

The temporal and geographic attributes of the Deepwater Horizon incident in 2010 likely exposed pelagic game fish species, such as mahi-mahi, to crude oil. Although much of the research assessing the effects of the spill has focused on early life stages of fish, studies examining whole-animal physiological responses of adult marine fish species are lacking. Using swim chamber respirometry, the present study demonstrates that acute exposure to a sublethal concentration of the water accommodated fraction of Deepwater Horizon crude oil results in significant swim performance impacts on young adult mahi-mahi, representing the first report of acute sublethal toxicity on adult pelagic fish in the Gulf of Mexico following the spill.

View Article and Find Full Text PDF