Publications by authors named "Ronald G Harvey"

Polycyclic aromatic hydrocarbons (PAHs), such as benzo[]pyrene (BP), are ubiquitous environmental contaminants that are implicated in causing lung cancer. BP is a component of tobacco smoke that is transformed enzymatically to active forms that interact with DNA. We reported previously development of a sensitive stable isotope dilution LC/MS method for analysis of BP metabolites.

View Article and Find Full Text PDF

Benzo[a]pyrene-7,8-dione (B[a]P-7,8-dione) is produced in human lung cells by the oxidation of (±)-B[a]P-7,8-trans-dihydrodiol, which is catalyzed by aldo-keto reductases (AKRs). However, information relevant to the cell-based metabolism of B[a]P-7,8-dione is lacking. We studied the metabolic fate of 2 μM 1,3-[(3)H(2)]-B[a]P-7,8-dione in human lung adenocarcinoma A549 cells, human bronchoalveolar H358 cells, and immortalized human bronchial epithelial HBEC-KT cells.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants and are carcinogenic in multiple organs and species. Benzo[a]pyrene (B[a]P) is a representative PAH and has been studied extensively for its carcinogenicity and toxicity. B[a]P itself is chemically inert and requires metabolic activation to exhibit its toxicity and carcinogenicity.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are suspect human lung carcinogens and can be metabolically activated to remote quinones, for example, benzo[a]pyrene-1,6-dione (B[a]P-1,6-dione) and B[a]P-3,6-dione by the action of either P450 monooxygenase or peroxidases, and to non-K region o-quinones, for example B[a]P-7,8-dione, by the action of aldo keto reductases (AKRs). B[a]P-7,8-dione also structurally resembles 4-hydroxyequilenin o-quinone. These three classes of quinones can redox cycle, generate reactive oxygen species (ROS), and produce the mutagenic lesion 8-oxo-dGuo and may contribute to PAH- and estrogen-induced carcinogenesis.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAH) are environmental and tobacco carcinogens. Metabolic activation of intermediate PAH trans-dihydrodiols by aldo-keto reductases (AKRs) leads to the formation of electrophilic and redox-active o-quinones. We investigated whether O-methylation by human recombinant soluble catechol-O-methyltransferase (S-COMT) is a feasible detoxication step for a panel of structurally diverse PAH-catechols produced during the redox-cycling process.

View Article and Find Full Text PDF

Environmental carcinogens, such as polycyclic aromatic hydrocarbons (PAHs), require metabolic activation to DNA-reactive metabolites in order to exert their tumorigenic effects. Benzo[a]pyrene (B[a]P), a prototypic PAH, is metabolized by cytochrome P450 (P450) 1A1/1B1 and epoxide hydrolase to (-)-B[a]P-7,8-dihydro-7,8-diol (B[a]P-7,8-dihydrodiol). B[a]P-7,8-dihydrodiol then undergoes further P4501A1/1B1-mediated metabolism to the ultimate carcinogen, (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydro-B[a]P (B[a]PDE), which forms DNA-adducts primarily with 2'-deoxyguanosine (dGuo) to form (+)-anti-trans-B[a]PDE-N(2)-dGuo (B[a]PDE-dGuo) in DNA.

View Article and Find Full Text PDF

The hypervalent iodine reagents -iodoxybenzoic acid (IBX) and bis(trifluoro-acetoxy)iodobenzene (BTI) are shown to be general reagents for regio-controlled oxidation of polycyclic aromatic phenols (PAPs) to specific isomers (, , or remote) of polycyclic aromatic quinones (PAQs). The oxidations of a series of PAPs with IBX take place under mild conditions to furnish the corresponding -PAQs. In contrast, oxidations of the same series of PAPs with BTI exhibit variable regiospecificity, affording -PAQs where structurally feasible and -PAQs or remote PAQ isomers in other cases.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbon (PAH) o-quinones produced by aldo-keto reductases are ligands for the aryl hydrocarbon receptor (AhR) (Burczynski, M. E., and Penning, T.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants produced in the combustion of organic matter. PAHs are present in automobile exhaust and tobacco smoke, and they have recently been designated as human carcinogens. Current evidence indicates that PAHs are activated enzymatically to mutagenic metabolites that interact with DNA.

View Article and Find Full Text PDF

AKR1B10 has been identified as a potential biomarker for human nonsmall cell lung carcinoma and as a tobacco exposure and response gene. AKR1B10 functions as an efficient retinal reductase in vitro and may regulate retinoic acid homeostasis. However, the possibility that this enzyme is able to activate polycyclic aromatic hydrocarbon (PAH) trans-dihydrodiols to form reactive and redox-active o-quinones has not been investigated to date.

View Article and Find Full Text PDF

Synthesis of the -labelled analogues of the carcinogenic polycyclic aromatic hydrocarbon benzo[]pyrene and its active metabolites are described. The method entails Pd-catalyzed Suzuki-Miyaura coupling of a naphthalene boronic acid with 2-bromobenzene-1,3-dialdehyde followed by Wittig reaction of the product with CH=PPh.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are tobacco carcinogens implicated in the causation of human lung cancer. Metabolic activation is a key prerequisite for PAHs to cause their deleterious effects. Using human lung adenocarcinoma (A549) cells, we provide evidence for the metabolic activation of (+/-)-trans-7,8dihydroxy-7,8-dihydrobenzo[a]pyrene (B[a]P-7,8-trans-dihydrodiol) by aldo-keto reductases (AKRs) to yield benzo[a]pyrene-7,8-dione (B[a]P-7,8-dione), a redox-active o-quinone.

View Article and Find Full Text PDF

Dibenzo[def,p]chrysene (DBC) is a highly carcinogenic polycyclic aromatic hydrocarbon suspected to be involved in initiation of lung cancer in smokers. Efficient new syntheses of DBC, its active metabolites [DBC diol (1), DBC dione (2), DBC diol epoxide (3)], and their previously unknown 13C2-labeled analogues are reported. The 13C2-labeled analogues are required as standards for sensitive methods of analysis of their DNA adducts in human cells using stable isotope dilution liquid chromatography/tandem mass spectrometry.

View Article and Find Full Text PDF

This study demonstrates that benzo[g]chrysene-11,12-dihydrodiol (B[g]C-11,12-dihydrodiol) derived from the fjord-region parent hydrocarbon B[g]C is oxidized by rat AKR1C9 with a k c a t/ K m 100 times greater than that observed with the commonly studied bay-region benzo[ a]pyrene-7,8-dihydrodiol (B[a]P-7,8-dihydrodiol). Conversely, despite its strikingly similar structure to B[ g]C-11,12-dihydrodiol, benzo[ c]phenanthrene-3,4-dihydrodiol (B[ c]Ph-3,4-dihydrodiol) is consumed by AKR1C9 at sluggish rates comparable to those observed with B[ a]P-7,8-dihydrodiol. CD spectroscopy revealed that only the (+)-B[ g]C-11,12-dihydrodiol stereoisomer was oxidized, while AKR1C9 oxidized both stereoisomers of B[a]P-7,8-dihydrodiol and B[ c]Ph-3,4-dihydrodiol.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are major environmental carcinogens produced in the combustion of fossil fuels, tobacco, and other organic matter. Current evidence indicates that PAHs are transformed enzymatically to active metabolites that react with DNA to form adducts that result in mutations. Three activation pathways have been proposed: the diol epoxide path, the radical-cation path, and the quinone path.

View Article and Find Full Text PDF

Benzo[ a]pyrene (B[ a]P), a representative polycyclic aromatic hydrocarbon (PAH), is metabolically activated by three enzymatic pathways: by peroxidases (e.g., cytochrome P450 peroxidase) to yield radical cations, by P4501A1/1B1 monooxygenation and epoxide hydrolase to yield diol epoxides, and by P4501A1/1B1 monooxygenation, epoxide hydrolase, and aldo-keto reductases (AKRs) to yield o-quinones.

View Article and Find Full Text PDF

A series of novel carbocations were generated from isomeric monoalkylated and dialkylated benz[a]anthracenes (BAs) by low-temperature protonation in FSO(3)H/SO(2)ClF. With the monoalkyl derivatives (5-methyl, 6-methyl, 7-methyl, and 7-ethyl) as well as the D-ring methylated analogues (9-methyl, 10-methyl, and 11-methyl), the C-7 or the C-12 protonated carbocations were observed (as the sole or major carbocation) in all cases. Protonation of the 12-methyl derivative (9) gave the C-7 protonated carbocation (9H+) as the kinetic species and the ipso-protonated carbocation (9aH+) as the thermodynamic cation.

View Article and Find Full Text PDF

The synthesis of the C(8)-aryl adducts of adenine and guanine formed by reaction of the radical cation metabolites of carcinogenic polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene (BP) and dibenzo[def,p]chrysene (DBC), with DNA is reported. The synthetic approach involves in the key step direct reaction of a PAH aldehyde with a di- or triamine precursor of a purine. The method is operationally simple, affords good yields of adducts, and is broad in its scope.

View Article and Find Full Text PDF

There is substantial evidence to suggest that polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]pyrene (B[a]P) induce lung cancer through metabolic activation. As part of a program to delineate the routes of PAH activation, we have examined DNA adducts that are formed in human lung cells. A stable isotope dilution liquid chromatography/multiple reaction monitoring mass spectrometry method was used to quantify eight anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydro-B[a]P (B[a]PDE)-derived DNA adducts in four H358 human bronchoalveolar cell lines with different phenotypes.

View Article and Find Full Text PDF

Reactive and redox-active polycyclic aromatic hydrocarbon (PAH) o-quinones produced by Aldo-Keto Reductases (AKRs) have the potential to cause depurinating adducts leading to the formation of abasic sites and oxidative base lesions. The aldehyde reactive probe (ARP) was used to detect these lesions in calf thymus DNA treated with three PAH o-quinones (BP-7,8-dione, 7,12-DMBA-3,4-dione, and BA-3,4-dione) in the absence and presence of redox-cycling conditions. In the absence of redox-cycling, a modest amount of abasic sites were detected indicating the formation of a low level of covalent o-quinone depurinating adducts (>3.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants found in car exhausts, charbroiled food, and tobacco smoke. Three pathways for the metabolic activation of B[a]P to ultimate carcinogens have been proposed. The most widely accepted pathway involves cytochrome-P450 (CYP) 1A1- and/or 1B1-mediated formation of B[a]P-7,8-oxide, which undergoes epoxide hydrolase-mediated metabolism to the proximate carcinogen B[a]P-7,8-dihydro-7,8-diol.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants and procarcinogens that require activation by host metabolism. Metabolic activation of PAHs by aldo-keto reductases (AKRs) leads to formation of reactive and redox active o-quinones, which may cause oxidatively generated DNA damage. Spectrophotometric assays showed that NADPH caused PAH o-quinones to enter futile redox cycles, which result in the depletion of excess cofactor.

View Article and Find Full Text PDF

[reaction: see text] A general method for efficient N(6)-arylation of 2'-deoxyadenosine via copper-catalyzed direct coupling with aryl iodides and bromides is described. The method is useful for aryl halides with either electron-donating or electron-withdrawing groups.

View Article and Find Full Text PDF

[structure: see text] The first syntheses of the adducts formed in the reactions of o-quinone metabolites of carcinogenic polycyclic aromatic hydrocarbons (BPQ and BAQ) at 2'-deoxyadenosine and 2'-deoxyguanosine sites in DNA are reported. These syntheses entail Pd-catalyzed coupling of protected amine derivatives of catechols with suitably protected halopurine analogues of 2'-deoxyribonucleosides.

View Article and Find Full Text PDF

Efficient new syntheses of the o-quinone derivatives of benzo[a]pyrene (BPQ), 7,12-dimethylbenz[a]anthracene (DMBAQ), and benz[a]anthracene (BAQ), implicated as active carcinogenic metabolites of the parent polycyclic aromatic hydrocarbons (PAHs), are reported. These PAH quinones also serve as starting compounds for the synthesis of the other active metabolites of these PAHs thought to be involved in their mechanism(s) of carcinogenesis. The latter include the corresponding o-catechols, trans-dihydrodiols, and the corresponding anti- and syn-diol epoxides.

View Article and Find Full Text PDF