Allosteric function is a critical component of many of the parts used to construct gene networks throughout synthetic biology. In this review, we discuss an emerging field of research and education, biomolecular systems engineering, that expands on the synthetic biology edifice-integrating workflows and strategies from protein engineering, chemical engineering, electrical engineering, and computer science principles. We focus on the role of engineered allosteric communication as it relates to transcriptional gene regulators-i.
View Article and Find Full Text PDFTraditionally engineered genetic circuits have almost exclusively used naturally occurring transcriptional repressors. Recently, non-natural transcription factors (repressors) have been engineered and employed in synthetic biology with great success. However, transcriptional anti-repressors have largely been absent with regard to the regulation of genes in engineered genetic circuits.
View Article and Find Full Text PDFThe control of gene expression is an important tool for metabolic engineering, the design of synthetic gene networks, and protein manufacturing. The most successful approaches to date are based on modulating mRNA synthesis via an inducible coupling to transcriptional effectors. Here we present a biological programming structure that leverages a system of engineered transcription factors and complementary genetic architectures.
View Article and Find Full Text PDFACS Synth Biol
February 2019
The lactose repressor, LacI (I), is an archetypal transcription factor that has been a workhorse in many synthetic genetic networks. LacI represses gene expression (apo ligand) and is induced upon binding of the ligand isopropyl β-d-1-thiogalactopyranoside (IPTG). Recently, laboratory evolution was used to confer inverted function in the native LacI topology resulting in anti-LacI (antilac) function (I), where IPTG binding results in gene suppression.
View Article and Find Full Text PDF