Background: Sleeping sickness (gambiense human African trypanosomiasis, gHAT) is a vector-borne disease targeted for global elimination of transmission (EoT) by 2030. There are, however, unknowns that have the potential to hinder the achievement and measurement of this goal. These include asymptomatic gHAT infections (inclusive of the potential to self-cure or harbour skin-only infections) and whether gHAT infection in animals can contribute to the transmission cycle in humans.
View Article and Find Full Text PDFThe intensification of intervention activities against the fatal vector-borne disease gambiense human African trypanosomiasis (gHAT, sleeping sickness) in the last two decades has led to a large decline in the number of annually reported cases. However, while we move closer to achieving the ambitious target of elimination of transmission (EoT) to humans, pockets of infection remain, and it becomes increasingly important to quantitatively assess if different regions are on track for elimination, and where intervention efforts should be focused. We present a previously developed stochastic mathematical model for gHAT in the Democratic Republic of Congo (DRC) and show that this same formulation is able to capture the dynamics of gHAT observed at the health area level (approximately 10,000 people).
View Article and Find Full Text PDFBackground: Human African trypanosomiasis is a parasitic disease caused by trypanosomes among which Trypanosoma brucei gambiense is responsible for a chronic form (gHAT) in West and Central Africa. Its elimination as a public health problem (EPHP) was targeted for 2020. Côte d'Ivoire was one of the first countries to be validated by WHO in 2020 and this was particularly challenging as the country still reported around a hundred cases a year in the early 2000s.
View Article and Find Full Text PDFHuman African trypanosomiasis, caused by the gambiense subspecies of Trypanosoma brucei (gHAT), is a deadly parasitic disease transmitted by tsetse. Partners worldwide have stepped up efforts to eliminate the disease, and the Chadian government has focused on the previously high-prevalence setting of Mandoul. In this study, we evaluate the economic efficiency of the intensified strategy that was put in place in 2014 aimed at interrupting the transmission of gHAT, and we make recommendations on the best way forward based on both epidemiological projections and cost-effectiveness.
View Article and Find Full Text PDFGambiense human African trypanosomiasis (gHAT) is a deadly vector-borne, neglected tropical disease found in West and Central Africa targeted for elimination of transmission (EoT) by 2030. The recent pandemic has illustrated how it can be important to quantify the impact that unplanned disruption to programme activities may have in achieving EoT. We used a previously developed model of gHAT fitted to data from the Democratic Republic of the Congo, the country with the highest global case burden, to explore how interruptions to intervention activities, due to e.
View Article and Find Full Text PDFGambiense human African trypanosomiasis (gHAT) has been targeted for elimination of transmission (EoT) to humans by 2030. Whilst this ambitious goal is rapidly approaching, there remain fundamental questions about the presence of non-human animal transmission cycles and their potential role in slowing progress towards, or even preventing, EoT. In this study we focus on the country with the most gHAT disease burden, the Democratic Republic of Congo (DRC), and use mathematical modelling to assess whether animals may contribute to transmission in specific regions, and if so, how their presence could impact the likelihood and timing of EoT.
View Article and Find Full Text PDFGambiense human African trypanosomiasis (sleeping sickness, gHAT) is a disease targeted for elimination of transmission by 2030. While annual new cases are at a historical minimum, the likelihood of achieving the target is unknown. We utilised modelling to study the impacts of four strategies using currently available interventions, including active and passive screening and vector control, on disease burden and transmission across 168 endemic health zones in the Democratic Republic of the Congo.
View Article and Find Full Text PDFGambiense human African trypanosomiasis (gHAT) is marked for elimination of transmission by 2030, but the disease persists in several low-income countries. We couple transmission and health outcomes models to examine the cost-effectiveness of four gHAT elimination strategies in five settings - spanning low- to high-risk - of the Democratic Republic of Congo. Alongside passive screening in fixed health facilities, the strategies include active screening at average or intensified coverage levels, alone or with vector control with a scale-back algorithm when no cases are reported for three consecutive years.
View Article and Find Full Text PDFBackground: In recent years, a programme of vector control, screening and treatment of gambiense human African trypanosomiasis (gHAT) infections led to a rapid decline in cases in the Mandoul focus of Chad. To represent the biology of transmission between humans and tsetse, we previously developed a mechanistic transmission model, fitted to data between 2000 and 2013 which suggested that transmission was interrupted by 2015. The present study outlines refinements to the model to: (1) Assess whether elimination of transmission has already been achieved despite low-level case reporting; (2) quantify the role of intensified interventions in transmission reduction; and (3) predict the trajectory of gHAT in Mandoul for the next decade under different strategies.
View Article and Find Full Text PDFGambiense human African trypanosomiasis (gHAT) is a virulent disease declining in burden but still endemic in West and Central Africa. Although it is targeted for elimination of transmission by 2030, there remain numerous questions about the drivers of infection and how these vary geographically. In this study we focus on the Democratic Republic of Congo (DRC), which accounted for 84% of the global case burden in 2016, to explore changes in transmission across the country and elucidate factors which may have contributed to the persistence of disease or success of interventions in different regions.
View Article and Find Full Text PDFDue to the COVID-19 pandemic, many key neglected tropical disease (NTD) activities have been postponed. This hindrance comes at a time when the NTDs are progressing towards their ambitious goals for 2030. Mathematical modelling on several NTDs, namely gambiense sleeping sickness, lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminthiases (STH), trachoma, and visceral leishmaniasis, shows that the impact of this disruption will vary across the diseases.
View Article and Find Full Text PDFRecent mathematical and statistical modeling of leprosy incidence data provides estimates of the current undiagnosed population and projections of diagnosed cases, as well as ongoing transmission. Furthermore, modeling studies have been used to evaluate the effectiveness of proposed intervention strategies, such as postleprosy exposure prophylaxis and novel diagnostics, relative to current approaches. Such modeling studies have revealed both a slow decline of new cases and a substantial pool of undiagnosed infections.
View Article and Find Full Text PDFBackground: Brazil has the second highest annual number of new leprosy cases. The aim of this study is to formally compare predictions of future new case detection rate (NCDR) trends and the annual probability of NCDR falling below 10/100,000 of four different modelling approaches in four states of Brazil: Rio Grande do Norte, Amazonas, Ceará, Tocantins.
Methods: A linear mixed model, a back-calculation approach, a deterministic compartmental model and an individual-based model were used.
Parasit Vectors
October 2015
Background: The number of new leprosy cases reported annually is falling worldwide, but remains relatively high in some populations. Because of the long and variable periods between infection, onset of disease, and diagnosis, the recently detected cases are a reflection of infection many years earlier. Estimation of the numbers of sub-clinical and clinical infections would be useful for management of elimination programmes.
View Article and Find Full Text PDFMeat quality traits have low heritability and large environmental influences. To predict, improve and manage meat quality, proteomic biomarkers are superior to genetic markers. The objectives of this research were (1) to find associations between proteome profiles of longissimus muscle at slaughter and meat quality accuracies of prediction of traits ranged from 20 up to 80%.
View Article and Find Full Text PDF