Mechanical perturbation triggers activation of resident myogenic stem cells to enter the cell cycle through a cascade of events including hepatocyte growth factor (HGF) release from its extracellular tethering and the subsequent presentation to signaling-receptor c-met. Here, we show that with aging, extracellular HGF undergoes tyrosine-residue (Y) nitration and loses c-met binding, thereby disturbing muscle homeostasis. Biochemical studies demonstrated that nitration/dysfunction is specific to HGF among other major growth factors and is characterized by its locations at Y198 and Y250 in c-met-binding domains.
View Article and Find Full Text PDFKey Points: Previous studies in fetuses with intrauterine growth restriction (IUGR) have shown that adrenergic dysregulation was associated with low insulin concentrations and greater insulin sensitivity. Although whole-body glucose clearance is normal, 1-month-old lambs with IUGR at birth have higher rates of hindlimb glucose uptake, which may compensate for myocyte deficiencies in glucose oxidation. Impaired glucose-stimulated insulin secretion in IUGR lambs is due to lower intra-islet insulin availability and not from glucose sensing.
View Article and Find Full Text PDFRecently, we found that resident myogenic stem satellite cells upregulate a multi-functional secreted protein, semaphorin 3A (Sema3A), exclusively at the early-differentiation phase in response to muscle injury; however, its physiological significance is still unknown. Here we show that Sema3A impacts slow-twitch fiber generation through a signaling pathway, cell-membrane receptor (neuropilin2-plexinA3) → myogenin-myocyte enhancer factor 2D → slow myosin heavy chain. This novel axis was found by small interfering RNA-transfection experiments in myoblast cultures, which also revealed an additional element that Sema3A-neuropilin1/plexinA1, A2 may enhance slow-fiber formation by activating signals that inhibit fast-myosin expression.
View Article and Find Full Text PDFBackground: Large-scale expansion of myogenic progenitors is necessary to support the development of high-throughput cellular assays in vitro and to advance genetic engineering approaches necessary to develop cellular therapies for rare muscle diseases. However, optimization has not been performed in order to maintain the differentiation capacity of myogenic cells undergoing long-term cell culture. Multiple extracellular matrices have been utilized for myogenic cell studies, but it remains unclear how different matrices influence long-term myogenic activity in culture.
View Article and Find Full Text PDFIntrauterine growth restriction (IUGR) reduces skeletal muscle mass in fetuses and offspring. Our objective was to determine whether myoblast dysfunction due to intrinsic cellular deficiencies or serum factors reduces myofibre hypertrophy in IUGR fetal sheep. At 134 days, IUGR fetuses weighed 67% less (P < 0.
View Article and Find Full Text PDFThe delivery of adult skeletal muscle stem cells, called satellite cells, to several injured muscles via the circulation would be useful, however, an improved understanding of cell fate and biodistribution following their delivery is important for this goal to be achieved. The objective of this study was to evaluate the ability of systemically delivered satellite cells to home to injured skeletal muscle using single-photon emission computed tomography (SPECT) imaging of (111)In-labeled satellite cells. Satellite cells labeled with (111)In-oxine and green fluorescent protein (GFP) were injected intravenously after bupivicaine-induced injury to the tibialis anterior muscle.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2013
The adaptor protein Numb has been implicated in the switch between cell proliferation and differentiation made by satellite cells during muscle repair. Using two genetic approaches to ablate Numb, we determined that, in its absence, muscle regeneration in response to injury was impaired. Single myofiber cultures demonstrated a lack of satellite cell proliferation in the absence of Numb, and the proliferation defect was confirmed in satellite cell cultures.
View Article and Find Full Text PDFUterine inflammation results in a poor uterine environment and early embryonic loss in the mare due to an inhibition of maternal recognition of pregnancy caused from increased prostaglandin F2α (PGF2α). Oxytocin binds to endometrial cell receptors to activate prostaglandin synthesis. An oxytocin receptor antagonist (Atosiban) and a cyclooxygenase inhibitor (indomethacin) both decrease PGF2α production.
View Article and Find Full Text PDFWhen skeletal muscle is stretched or injured, satellite cells, resident myogenic stem cells positioned beneath the basal lamina of mature muscle fibers, are activated to enter the cell cycle. This signaling pathway is a cascade of events including calcium-calmodulin formation, nitric oxide (NO) radical production by NO synthase, matrix metalloproteinase activation, release of hepatocyte growth factor (HGF) from the extracellular matrix, and presentation of HGF to the receptor c-met, as demonstrated by assays of primary cultures and in vivo experiments. Here, we add evidence that two ion channels, the mechanosensitive cation channel (MS channel) and the long-lasting-type voltage-gated calcium-ion channel (L-VGC channel), mediate the influx of extracellular calcium ions in response to cyclic stretch in satellite cell cultures.
View Article and Find Full Text PDFThe regulation of adult skeletal muscle repair and regeneration is largely due to the contribution of resident adult myogenic precursor cells called satellite cells. The events preceding their participation in muscle repair include activation (exit from quiescence), proliferation, and differentiation. This study examined the effects of transforming growth factor-beta (TGF-β1) on satellite cell activation, determined whether TGF-β1 could maintain quiescence in the presence of hepatocyte growth factor (HGF), and whether the regulation of satellite cell activation with TGF-β1 improves the ability of satellite cells to withstand oxidative stress.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
March 2010
Skeletal muscle regeneration and work-induced hypertrophy rely on molecular events responsible for activation and quiescence of resident myogenic stem cells, satellite cells. Recent studies demonstrated that hepatocyte growth factor (HGF) triggers activation and entry into the cell cycle in response to mechanical perturbation, and that subsequent expression of myostatin may signal a return to cell quiescence. However, mechanisms responsible for coordinating expression of myostatin after an appropriate time lag following activation and proliferation are not clear.
View Article and Find Full Text PDFRegenerative coordination and remodeling of the intramuscular motoneuron network and neuromuscular connections are critical for restoring skeletal muscle function and physiological properties. The regulatory mechanisms of such coordination remain unclear, although both attractive and repulsive axon guidance molecules may be involved in the signaling pathway. Here we show that expression of a neural secreted chemorepellent semaphorin 3A (Sema3A) is remarkably upregulated in satellite cells of resident myogenic stem cells that are positioned beneath the basal lamina of mature muscle fibers, when treated with hepatocyte growth factor (HGF), established as an essential cue in muscle fiber growth and regeneration.
View Article and Find Full Text PDFWhen skeletal muscle is stretched or injured, myogenic satellite cells are activated to enter the cell cycle. This process depends on nitric oxide (NO) production by NO synthase (NOS), matrix metalloproteinase activation, release of hepatocyte growth factor (HGF) from the extracellular matrix, and presentation of HGF to the c-met receptor as demonstrated by a primary culture and in vivo assays. We now add evidence that calcium-calmodulin is involved in the satellite cell activation cascade in vitro.
View Article and Find Full Text PDFWhen skeletal muscle is stretched or injured, myogenic satellite cells are activated to enter the cell cycle. This process depends on nitric oxide (NO) production, release of hepatocyte growth factor (HGF) from the extracellular matrix, and presentation of HGF to the c-met receptor. Matrix metalloproteinases (MMPs), a large family of zinc-dependent endopeptidases, mediate HGF release from the matrix and this step in the pathway is downstream from NO synthesis [Yamada, M.
View Article and Find Full Text PDFThe regulation of myogenic progenitor cells during muscle regeneration is not clearly understood. We have previously shown that the Foxk1 gene, a member of the forkhead/winged helix family of transcription factors, is expressed in myogenic progenitor cells in adult skeletal muscle. In the present study, we utilize transgenic technology and demonstrate that the 4.
View Article and Find Full Text PDFRaf/MEK/ERK signaling in skeletal muscle cells affects several aspects of myogenesis that are correlated with the duration and intensity of the input signal. 23A2RafER(DD) myoblasts directing elevated levels of Raf kinase for 24 h are mitotically inactive. Removal of the stimulus results in cell cycle re-entry and proliferation.
View Article and Find Full Text PDFWhen skeletal muscle is stretched or injured, myogenic satellite cells are activated to enter the cell cycle. This process depends on nitric oxide (NO) production, release of hepatocyte growth factor (HGF) from the extracellular matrix, and presentation of HGF to the c-met receptor. Experiments reported herein provide new evidence that matrix metalloproteinases (MMPs) are involved in the NO-dependent release of HGF in vitro.
View Article and Find Full Text PDFWhen skeletal muscle is stretched or injured, satellite cells are activated to enter the cell cycle, and this process could be mediated by hepatocyte growth factor (HGF) and nitric oxide (NO) as revealed by primary culture technique. In this system, which was originally developed by Allen et al. [Allen, R.
View Article and Find Full Text PDFIn the present study, we examined the roles of hepatocyte growth factor (HGF) and nitric oxide (NO) in the activation of satellite cells in passively stretched rat skeletal muscle. A hindlimb suspension model was developed in which the vastus, adductor, and gracilis muscles were subjected to stretch for 1 h. Satellite cells were activated by stretch determined on the basis of 5-bromo-2'-deoxyuridine (BrdU) incorporation in vivo.
View Article and Find Full Text PDFMyostatin is an endogenous inhibitor of muscle conserved across diverse species. In the absence of myostatin, there is massive muscle growth in mice, cattle, and humans. Previous studies in the mdx mouse model of muscular dystrophy demonstrate that inhibiting myostatin attenuates several features of dystrophic muscle.
View Article and Find Full Text PDFMuscle Nerve
November 2004
When skeletal muscle is stretched or injured, satellite cells are activated to proliferate, and this process can be mediated by release of the active form of hepatocyte growth factor (HGF) from the extracellular matrix. The objective of these experiments was to determine whether the mechanism of release includes proteolytic activation of pro-HGF. Extracellular HGF in uninjured adult rat extensor digitorum longus muscle was extracted by treatment with 1 M NaCl or heparinases I and III in the presence of a cocktail of serine protease inhibitors.
View Article and Find Full Text PDFSkeletal muscle satellite cells play an important role in muscle regeneration. Previous work has suggested that nonsteroidal anti-inflammatory drugs may inhibit their activity. We cultured skeletal muscle satellite cells from 9-month-old Sprague-Dawley rats and exposed them to naproxen sodium (a nonselective cyclooxygenase inhibitor), NS-398 (a selective cyclooxygenase-2 inhibitor), and SC-560 (a selective cyclooxygenase-1 inhibitor) for 96 h.
View Article and Find Full Text PDFApplication of mechanical stretch to cultured adult rat muscle satellite cells results in release of hepatocyte growth factor (HGF) and accelerated entry into the cell cycle. Stretch activation of cultured rat muscle satellite cells was observed only when medium pH was between 7.1 and 7.
View Article and Find Full Text PDF