Publications by authors named "Ronald Derking"

An effective human immunodeficiency virus 1 (HIV-1) vaccine will most likely have to elicit broadly neutralizing antibodies (bNAbs) to overcome the sequence diversity of the envelope glycoprotein (Env). So far, stabilized versions of Env, such as SOSIP trimers, have been able to induce neutralizing antibody (NAb) responses, but those responses are mainly strain-specific. Here we attempted to broaden NAb responses by using a multivalent vaccine and applying a number of design improvements.

View Article and Find Full Text PDF

Adolescents are a growing population of people living with HIV. The period between weaning and sexual debut presents a low-risk window for HIV acquisition, making early childhood an ideal time for implementing an immunization regimen. Because the elicitation of broadly neutralizing antibodies (bnAbs) is critical for an effective HIV vaccine, our goal was to assess the ability of a bnAb B cell lineage-designed HIV envelope SOSIP (protein stabilized by a disulfide bond between gp120-gp41-named "SOS"-and an isoleucine-to-proline point mutation-named "IP"-at residue 559) to induce precursor CD4 binding site (CD4bs)-targeting bnAbs in early life.

View Article and Find Full Text PDF

Eliciting potent and broadly neutralizing antibodies (bnAbs) is a major goal in HIV-1 vaccine development. Here, we describe how germline-targeting immunogen BG505 SOSIP germline trimer 1.1 (GT1.

View Article and Find Full Text PDF

There is currently no prophylactic vaccine available for human immunodeficiency virus (HIV). Research efforts have resulted in improved immunogens that mimic the native envelope (Env) glycoprotein structure. Recently, a novel triple tandem trimer (TTT) platform has been used to generate a plasmid encoding Env immunogen (pBG505-TTT) that expresses only as trimers, making it more suitable for nucleic acid vaccines.

View Article and Find Full Text PDF

A vaccine that can achieve protective immunity prior to sexual debut is critical to prevent the estimated 410,000 new HIV infections that occur yearly in adolescents. As children living with HIV can make broadly neutralizing antibody (bnAb) responses in plasma at a faster rate than adults, early childhood is an opportune window for implementation of a multi-dose HIV immunization strategy to elicit protective immunity prior to adolescence. Therefore, the goal of our study was to assess the ability of a B cell lineage-designed HIV envelope SOSIP to induce bnAbs in early life.

View Article and Find Full Text PDF

Targeting germline (gl-) precursors of broadly neutralizing antibodies (bNAbs) is acknowledged as an important strategy for HIV-1 vaccines. The VRC01-class of bNAbs is attractive because of its distinct genetic signature. However, VRC01-class bNAbs often require extensive somatic hypermutation, including rare insertions and deletions.

View Article and Find Full Text PDF

HIV-1 envelope (Env) proteins designed to induce neutralizing antibody responses allow study of the role of affinities (equilibrium dissociation constant [K]) and kinetic rates (association/dissociation rates) on B cell antigen recognition. It is unclear whether affinity discrimination during B cell activation is based solely on Env protein binding K and whether B cells discriminate among proteins of similar affinities that bind with different kinetic rates. Here, we use a panel of Env proteins and Ramos B cell lines expressing immunoglobulin M (IgM) B cell receptors (BCRs) with specificity for CD4-binding-site broadly neutralizing antibodies to study the role of antigen binding kinetic rates on both early (proximal/distal signaling) and late events (BCR/antigen internalization) in B cell activation.

View Article and Find Full Text PDF

Small molecule adjuvants are attractive for enhancing broad protection and durability of immune responses elicited by subunit vaccines. Covalent attachment of an adjuvant to an immunogen is particularly attractive because it simultaneously delivers both entities to antigen presenting cells resulting in more efficient immune activation. There is, however, a lack of methods to conjugate small molecule immune potentiators to viral glycoprotein immunogens without compromising epitope integrity.

View Article and Find Full Text PDF

Introduction: The development of a human immunodeficiency virus 1 (HIV-1) vaccine remains a formidable challenge. An effective vaccine likely requires the induction of broadly neutralizing antibodies (bNAbs), which likely involves the use of native-like HIV-1 envelope (Env) trimers at some or all stages of vaccination. Development of such trimers has been very difficult, but much progress has been made in the past decade, starting with the BG505 SOSIP trimer, elucidation of its atomic structure and implementing subsequent design iterations.

View Article and Find Full Text PDF
Article Synopsis
  • Artificial glycan holes on recombinant Env-based vaccines can occur when potential N-linked glycosylation sites are not fully occupied, which is not the case in viral counterparts.
  • Native-like SOSIP trimers harbor these glycan holes, allowing for the induction of strain-specific neutralizing antibodies (NAbs).
  • To enhance glycan coverage and better mimic the natural BG505 Env structure, researchers modified specific sequons, leading to improved occupancy of critical glycosylation sites and potentially reducing unwanted immune responses to the vaccine antigens.
View Article and Find Full Text PDF

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a large impact on global health, travel, and economy. Therefore, preventative and therapeutic measures are urgently needed. Here, we isolated monoclonal antibodies from three convalescent coronavirus disease 2019 (COVID-19) patients using a SARS-CoV-2 stabilized prefusion spike protein.

View Article and Find Full Text PDF

The recent identification of three broadly neutralizing antibodies (bnAbs) against gp120-gp41 interface epitopes has expanded the targetable surface on the HIV-1 envelope glycoprotein (Env) trimer. By using biochemical, biophysical and computational methods, we map the previously unknown trimer epitopes of two related antibodies, 3BC315 and 3BC176. A cryo-EM reconstruction of a soluble Env trimer bound to 3BC315 Fab at 9.

View Article and Find Full Text PDF

A challenge for HIV-1 immunogen design is the difficulty of inducing neutralizing antibodies (NAbs) against neutralization-resistant (tier 2) viruses that dominate human transmissions. We show that a soluble recombinant HIV-1 envelope glycoprotein trimer that adopts a native conformation, BG505 SOSIP.664, induced NAbs potently against the sequence-matched tier 2 virus in rabbits and similar but weaker responses in macaques.

View Article and Find Full Text PDF

The trimeric envelope (Env) spike is the focus of vaccine design efforts aimed at generating broadly neutralizing antibodies (bNAbs) to protect against HIV-1 infection. Three recent developments have facilitated a thorough investigation of the antigenic structure of the Env trimer: 1) the isolation of many bNAbs against multiple different epitopes; 2) the generation of a soluble trimer mimic, BG505 SOSIP.664 gp140, that expresses most bNAb epitopes; 3) facile binding assays involving the oriented immobilization of tagged trimers.

View Article and Find Full Text PDF

Antibodies with the ability to block the interaction of HIV-1 envelope glycoprotein (Env) gp120 with CD4, including those overlapping the CD4 binding site (CD4bs antibodies), can protect from infection by HIV-1, and their elicitation may be an interesting goal for any vaccination strategy. To identify gp120/CD4 blocking antibodies in plasma samples from HIV-1 infected individuals we have developed a competitive flow cytometry-based functional assay. In a cohort of treatment-naïve chronically infected patients, we showed that gp120/CD4 blocking antibodies were frequently elicited (detected in 97% plasma samples) and correlated with binding to trimeric HIV-1 envelope glycoproteins.

View Article and Find Full Text PDF

Unlabelled: Recombinant trimeric mimics of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) spike should expose as many epitopes as possible for broadly neutralizing antibodies (bNAbs) but few, if any, for nonneutralizing antibodies (non-NAbs). Soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A strain BG505 approach this ideal and are therefore plausible vaccine candidates.

View Article and Find Full Text PDF

The isolation of human monoclonal antibodies is providing important insights into the specificities that underlie broad neutralization of HIV-1 (reviewed in ref. 1). Here we report a broad and extremely potent HIV-specific monoclonal antibody, termed 35O22, which binds a novel HIV-1 envelope glycoprotein (Env) epitope.

View Article and Find Full Text PDF

Background: The trimeric envelope glycoproteins (Env) on the surface of HIV-1 virions are the targets for neutralizing antibodies (NAbs). No candidate HIV-1 immunogen has yet induced potent, broadly active NAbs (bNAbs). Part of the explanation may be that previously tested Env proteins inadequately mimic the functional, native Env complex.

View Article and Find Full Text PDF

All previously characterized broadly neutralizing antibodies to the HIV-1 envelope glycoprotein (Env) target one of four major sites of vulnerability. Here, we define and structurally characterize a unique epitope on Env that is recognized by a recently discovered family of human monoclonal antibodies (PGT151-PGT158). The PGT151 epitope is comprised of residues and glycans at the interface of gp41 and gp120 within a single protomer and glycans from both subunits of a second protomer and represents a neutralizing epitope that is dependent on both gp120 and gp41.

View Article and Find Full Text PDF

Broadly neutralizing HIV antibodies are much sought after (a) to guide vaccine design, both as templates and as indicators of the authenticity of vaccine candidates, (b) to assist in structural studies, and (c) to serve as potential therapeutics. However, the number of targets on the viral envelope spike for such antibodies has been limited. Here, we describe a set of human monoclonal antibodies that define what is, to the best of our knowledge, a previously undefined target on HIV Env.

View Article and Find Full Text PDF

HIV-1 transcription depends on cellular transcription factors that bind to sequences in the long-terminal repeat (LTR) promoter. Each HIV-1 subtype has a specific LTR promoter configuration, and minor sequence changes in transcription factor binding sites (TFBSs) or their arrangement can influence transcriptional activity, virus replication and latency properties. Previously, we investigated the proviral latency properties of different HIV-1 subtypes in the SupT1 T cell line.

View Article and Find Full Text PDF

We compare the antigenicity and conformation of soluble, cleaved vs. uncleaved envelope glycoprotein (Env gp)140 trimers from the subtype A HIV type 1 (HIV-1) strain BG505. The impact of gp120-gp41 cleavage on trimer structure, in the presence or absence of trimer-stabilizing modifications (i.

View Article and Find Full Text PDF

A desirable but as yet unachieved property of a human immunodeficiency virus type 1 (HIV-1) vaccine candidate is the ability to induce broadly neutralizing antibodies (bNAbs). One approach to the problem is to create trimeric mimics of the native envelope glycoprotein (Env) spike that expose as many bNAb epitopes as possible, while occluding those for non-neutralizing antibodies (non-NAbs). Here, we describe the design and properties of soluble, cleaved SOSIP.

View Article and Find Full Text PDF

PG9 is the founder member of an expanding family of glycan-dependent human antibodies that preferentially bind the HIV (HIV-1) envelope (Env) glycoprotein (gp) trimer and broadly neutralize the virus. Here, we show that a soluble SOSIP.664 gp140 trimer constructed from the Clade A BG505 sequence binds PG9 with high affinity (∼11 nM), enabling structural and biophysical characterizations of the PG9:Env trimer complex.

View Article and Find Full Text PDF