Publications by authors named "Ronald DeMattos"

Background: Anti-amyloid-β (Aβ) immunotherapy trials have revealed amyloid-related imaging abnormalities (ARIA) as the most prevalent and serious adverse events linked to pathological changes in cerebral vasculature. Recent studies underscore the critical involvement of perivascular macrophages and the infiltration of peripheral immune cells in regulating cerebrovascular damage. Specifically, Aβ antibodies engaged at cerebral amyloid angiopathy (CAA) deposits trigger perivascular macrophage activation and the upregulation of genes associated with vascular permeability.

View Article and Find Full Text PDF

Background: Amyloid-related imaging abnormalities (ARIA) have been identified as the most common and serious adverse events resulting from pathological changes in the cerebral vasculature during several recent anti-amyloid-β (Aβ) immunotherapy trials. However, the precise cellular and molecular mechanisms underlying how amyloid immunotherapy enhances cerebral amyloid angiopathy (CAA)-mediated alterations in vascular permeability and microhemorrhages are not currently understood. Interestingly, brain perivascular macrophages have been implicated in regulating CAA deposition and cerebrovascular function however, further investigations are required to understand how perivascular macrophages play a role in enhancing CAA-related vascular permeability and microhemorrhages associated with amyloid immunotherapy.

View Article and Find Full Text PDF

Unlabelled: Brain metastasis is a significant cause of morbidity and mortality in multiple cancer types and represents an unmet clinical need. The mechanisms that mediate metastatic cancer growth in the brain parenchyma are largely unknown. Melanoma, which has the highest rate of brain metastasis among common cancer types, is an ideal model to study how cancer cells adapt to the brain parenchyma.

View Article and Find Full Text PDF

The study of Alzheimer's disease (AD) has led to an increased understanding of the multiple pathologies and pathways of the disease. As such, it has been proposed that AD and its various stages might be most effectively treated with a combination approach rather than a single therapy; however, combination approaches present many challenges that include limitations of non-clinical models, complexity of clinical trial design, and unclear regulatory requirements. The Alzheimer's Association Research Roundtable meeting on May 7-8, 2018, discussed the approaches and challenges of combination therapy for AD.

View Article and Find Full Text PDF

LY2599666 is a humanized, affinity-optimized monoclonal antibody antigen-binding fragment linked to a PEG molecule and targets soluble amyloid-β (Aβ) monomers. This first-in-human dose ascending study assessed pharmacokinetics (PK) (measured as serum free LY2599666 concentration) and pharmacodynamic (PD) effects (measured as plasma total soluble Aβ40 and Aβ42) after a single subcutaneous (SC) dose of 10, 25, 100, and 200 mg LY2599666 in healthy subjects. As LY2599666 binds to multiple soluble Aβ monomers, a two-target mediated drug disposition model (TMDD) was developed to simultaneously fit serum LY2599666 concentration and Aβ monomer levels.

View Article and Find Full Text PDF

Background: Activation of microglia, the resident immune cells of the central nervous system, is a prominent pathological hallmark of Alzheimer's disease (AD). However, the gene expression changes underlying microglia activation in response to tau pathology remain elusive. Furthermore, it is not clear how murine gene expression changes relate to human gene expression networks.

View Article and Find Full Text PDF

Introduction: Solanezumab treatment was previously shown to significantly increase total (bound + unbound) cerebrospinal fluid (CSF) levels of amyloid β (Aβ) and Aβ in patients with mild to moderate Alzheimer's disease dementia yet did not produce meaningful cognitive effects. This analysis assessed solanezumab's central nervous system target engagement by evaluating changes in CSF total and free Aβ isoforms and their relationship with solanezumab exposure.

Methods: CSF Aβ isoform concentrations were measured in patients with mild Alzheimer's disease dementia from a pooled EXPEDITION + EXPEDITION2 population and from EXPEDITION3.

View Article and Find Full Text PDF

Background: Alzheimer's disease is characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles. The humanized monoclonal antibody solanezumab was designed to increase the clearance from the brain of soluble Aβ, peptides that may lead to toxic effects in the synapses and precede the deposition of fibrillary amyloid.

Methods: We conducted a double-blind, placebo-controlled, phase 3 trial involving patients with mild dementia due to Alzheimer's disease, defined as a Mini-Mental State Examination (MMSE) score of 20 to 26 (on a scale from 0 to 30, with higher scores indicating better cognition) and with amyloid deposition shown by means of florbetapir positron-emission tomography or Aβ1-42 measurements in cerebrospinal fluid.

View Article and Find Full Text PDF

Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial receptor that recognizes changes in the lipid microenvironment, which may occur during amyloid β (Aβ) accumulation and neuronal degeneration in Alzheimer's disease (AD). Rare TREM2 variants that affect TREM2 function lead to an increased risk of developing AD. In murine models of AD, TREM2 deficiency prevents microglial clustering around Aβ deposits.

View Article and Find Full Text PDF

Given the complex neuropathology Alzheimer's disease (AD), combination therapy may be necessary for effective treatment. However, scientific, pragmatic, regulatory, and business challenges need to be addressed before combination therapy for AD can become a reality. Leaders from academia and industry, along with a former member of the Food and Drug Administration and the Alzheimer's Association, have explored these challenges and here propose a strategy to facilitate proof-of-concept combination therapy trials in the near future.

View Article and Find Full Text PDF

Introduction: EXPEDITION and EXPEDITION2 were identically designed placebo-controlled phase 3 studies assessing effects of solanezumab, an antiamyloid monoclonal antibody binding soluble amyloid-β peptide, on cognitive and functional decline over 80 weeks in patients with mild-to-moderate Alzheimer's disease (AD). Primary findings for both studies have been published.

Methods: Secondary analyses of efficacy, biomarker, and safety endpoints in the pooled (EXPEDTION + EXPEDITION2) mild AD population were performed.

View Article and Find Full Text PDF

Introduction: The β-secretase enzyme, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1), cleaves amyloid precursor protein (APP) in the first step in β-amyloid (Aβ) peptide production. Thus, BACE1 is a key target for candidate disease-modifying treatment of Alzheimer's disease. In a previous exploratory Aβ biomarker study, we found that BACE1 inhibitor treatment resulted in decreased levels of Aβ1-34 together with increased Aβ5-40, suggesting that these Aβ species may be novel pharmacodynamic biomarkers in clinical trials.

View Article and Find Full Text PDF

The aim of this study was to validate new assays for measurement of amyloid-β (Aβ) peptides in cerebrospinal fluid (CSF) and plasma specimens in clinical studies of solanezumab according to current regulatory recommendations. Four assays based on the INNOTEST® β-AMYLOID(1-42) and prototype INNOTEST β-AMYLOID(1-40) kits were developed and validated. To render these assays 'solanezumab-tolerant', excess drug was added to calibrators, quality control, and test samples via a 2-fold dilution with kit diluent.

View Article and Find Full Text PDF

Aβ Immunotherapy is a promising therapeutic approach for Alzheimer's disease. Preclinical studies demonstrate that plaque prevention is possible; however, the more relevant therapeutic removal of existing plaque has proven elusive. Monoclonal antibodies in development target both soluble and insoluble Aβ peptide.

View Article and Find Full Text PDF

The apolipoprotein E (APOE)-ε4 allele is the strongest genetic risk factor for late-onset, sporadic Alzheimer's disease, likely increasing risk by altering amyloid-β (Aβ) accumulation. We recently demonstrated that the low-density lipoprotein receptor (LDLR) is a major apoE receptor in the brain that strongly regulates amyloid plaque deposition. In the current study, we sought to understand the mechanism by which LDLR regulates Aβ accumulation by altering Aβ clearance from brain interstitial fluid.

View Article and Find Full Text PDF

Objectives: To assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of 12 weekly infusions of solanezumab, an anti-β-amyloid (Aβ) antibody, in patients with mild-to-moderate Alzheimer's disease. Cognitive measures were also obtained.

Methods: In this phase 2, randomized, double-blind, placebo-controlled clinical trial, 52 patients with Alzheimer's disease received placebo or antibody (100 mg every 4 weeks, 100 mg weekly, 400 mg every 4 weeks, or 400 mg weekly) for 12 weeks.

View Article and Find Full Text PDF

β-Amyloid (Aβ), a vasoactive protein, and elevated blood pressure (BP) levels are associated with Alzheimer disease (AD) and possibly vascular dementia. We investigated the joint association of midlife BP and Aβ peptide levels with the risk for late-life AD and vascular dementia. Subjects were 667 Japanese-American men (including 73 with a brain autopsy), from the prospective Honolulu Heart Program/Honolulu Asia Aging Study (1965-2000).

View Article and Find Full Text PDF

The apolipoprotein E (APOE) ε4 allele is the strongest genetic risk factor for late-onset, sporadic Alzheimer's disease (AD). The APOE ε4 allele markedly increases AD risk and decreases age of onset, likely through its strong effect on the accumulation of amyloid-β (Aβ) peptide. In contrast, the APOE ε2 allele appears to decrease AD risk.

View Article and Find Full Text PDF

Tau measurements in cerebrospinal fluid (CSF) are gaining acceptance as aids to diagnosis of Alzheimer's disease (AD) and differentiation from other dementias. Two ELISA assays, the INNOTEST® hTAU Ag and the INNOTEST® PHOSPHO-TAU(181P) for quantification of t-tau and p-tau181 respectively, have been validated to regulatory standards. Validation parameters were determined by repeated testing of human CSF pools.

View Article and Find Full Text PDF

"Animal Models of Neural Disease" was the focus of General Session 5 at a 2010 scientific symposium that was sponsored jointly by the Society of Toxicologic Pathology (STP) and the International Federation of Societies of Toxicologic Pathologists (IFSTP). The objective was to consider issues that dictate the choice of animal models for neuropathology-based studies used to investigate neurological diseases and novel therapeutic agents to treat them. In some cases, no animal model exists that recapitulates the attributes of the human disease (e.

View Article and Find Full Text PDF

Amyloid-beta (Abeta) peptides, and total and phosphorylated tau are potential biomarkers for use in the development of treatments for Alzheimer's disease. Abeta(1-41) forms extracellular amyloid plaques, while tau and phospho-tau form intracellular neurofibrillary tangles in the brains of Alzheimer's disease patients. Plasma and cerebrospinal fluid concentrations of Abeta decreased following the clinical administration of gamma-secretase inhibitors and increased following the clinical administration of an anti-Abeta antibody.

View Article and Find Full Text PDF

Objectives: Active and passive immunization strategies have been suggested as possible options for the treatment of Alzheimer disease (AD). LY2062430 (solanezumab) is a humanized monoclonal antibody being studied as a putative disease-modifying treatment of AD.

Methods: Patients with mild to moderate AD were screened and selected for inclusion.

View Article and Find Full Text PDF

Objective: Accumulation of amyloid-beta (Abeta) by overproduction or underclearance in the central nervous system (CNS) is hypothesized to be a necessary event in the pathogenesis of Alzheimer's disease. However, previously, there has not been a method to determine drug effects on Abeta production or clearance in the human CNS. The objective of this study was to determine the effects of a gamma-secretase inhibitor on the production of Abeta in the human CNS.

View Article and Find Full Text PDF

Cholesterol homeostasis is of emerging therapeutic importance for Alzheimer's disease (AD). Agonists of liver-X-receptors (LXRs) stimulate several genes that regulate cholesterol homeostasis, and synthetic LXR agonists decrease neuropathological and cognitive phenotypes in AD mouse models. The cholesterol transporter ABCG1 is LXR-responsive and highly expressed in brain.

View Article and Find Full Text PDF