Surface light scattering (SLS) by capillary waves was used to investigate the adsorption behavior of non-ionic sugar surfactants at the air/liquid interface. SLS by the subphase (water) followed predictions from hydrodynamic theory. The viscoelastic properties (surface elasticity and surface viscosity) of monolayers formed by octyl beta-glucoside, octyl alpha-glucoside, and 2-ethylhexyl alpha-glucoside surfactants were quantified at submicellar concentrations.
View Article and Find Full Text PDFThe physiochemical nature of the metal-extractant species in organic solvent has been a matter of debate over liquid-liquid extraction of transition metals by bis(2-ethylhexyl) phosphate. The aggregation behavior of nickel(II), cobalt(II), lead(II), and zinc(II) bis(2-ethylhexyl) phosphate have been investigated using molecular modeling. The recently confirmed "open" water channels rodlike reversed micelles which is in contact with the nonaqueous solvent rather than in an inner core (or "closed" water channel) of the nickel-extractant species by Ibrahim and Neuman appears to be a unique structure for such species.
View Article and Find Full Text PDFA recently proposed model for the rodlike reversed micelles of nickel(II) bis(2-ethylhexyl)phosphate is examined in greater detail using 1H NMR spectroscopy and molecular modeling. 1H NMR spectra show that the solubilized water molecules are situated in a different environment compared with the water molecules in classical (AOT) reversed micelles. Geometry optimization and molecular dynamics simulation clearly indicate that the water molecules are not located in the interior core of the reversed micelles, but instead the water molecules exist in compartments or channels in the surface of these rodlike reversed micelles, thereby confirming the open water-channel model of reversed micelles.
View Article and Find Full Text PDFThe colloidal probe technique is commonly employed to determine the adhesion force between a particle and a solid surface. Characterization of the adhesion of a particle across a surface can be as important, if not more so, as the determination of an average value for the adhesion. Unfortunately, the measurement of the variation in adhesion can be difficult at best.
View Article and Find Full Text PDFThe association between low-charge-density polyelectrolytes adsorbed onto negatively charged surfaces (mica and silica) and an anionic surfactant, sodium dodecyl sulfate (SDS), has been investigated using surface force measurements, ellipsometry, and XPS. All three techniques show that the polyelectrolyte desorbs when the SDS concentration is high enough. The XPS study indicates that desorption starts at a SDS concentration of ca.
View Article and Find Full Text PDF