Supramolecular motifs in elastomeric biomaterials facilitate the modular incorporation of additives with corresponding motifs. The influence of the elastomeric supramolecular base polymer on the presentation of additives has been sparsely examined, limiting the knowledge of transferability of effective functionalization between polymers. Here it was investigated if the polymer backbone and the additive influence biomaterial modification in two different types of hydrogen bonding supramolecular systems, that is, based on ureido-pyrimidinone or bis-urea units.
View Article and Find Full Text PDFBio-artificial kidneys require conveniently synthesized membranes providing signals that regulate renal epithelial cell function. Therefore, we aimed to find synthetic analogues for natural extracellular matrix (ECM) protein coatings traditionally used for epithelial cell culturing. Two biomaterial libraries, based on natural ECM-coatings and on synthetic supramolecular small molecule additives, were developed.
View Article and Find Full Text PDFA variety of biomedical applications requires tailored membranes; fabrication through a mix-and-match approach is simple and desired. Polymers based on supramolecular bis-urea (BU) moieties are capable of modular integration through directed non-covalent stacking. Here, it is proposed that non-cell adhesive properties can be introduced in polycaprolactone-BU-based membranes by the addition of poly(ethylene glycol) (PEG)-BU during immersion precipitation membrane fabrication, while unmodified PEG is not retained in the membrane.
View Article and Find Full Text PDFSupramolecular biomaterials based on hydrogen bonding units can be conveniently functionalized in a mix-and-match approach using supramolecular additives. The presentation of bioactive additives has been sparsely investigated in supramolecular-based elastomeric biomaterials. Here it was investigated how cell adhesive peptides are presented and affect the surface in supramolecular biomaterials based either on ureido-pyrimidinone (UPy) or bisurea (BU) moieties.
View Article and Find Full Text PDFInduction of a functional, tight monolayer of renal epithelial cells on a synthetic membrane to be applied in a bioartificial kidney device requires for bio-activation of the membrane. The current golden standard in bio-activation is the combination of a random polymeric catechol (L-DOPA) coating and collagen type IV (Col IV). Here the possibility of replacing this with defined monomeric catechol functionalization on a biomaterial surface using supramolecular ureido-pyrimidinone (UPy)-moieties is investigated.
View Article and Find Full Text PDFJ Polym Sci A Polym Chem
September 2018
Biomaterials based on non-active polymers functionalized with antimicrobial agents by covalent modification or mixing are currently regarded as high potential solutions to prevent biomaterial associated infections that are major causes of biomedical device failure. Herewith a strategy is proposed in which antimicrobial materials are prepared by simply mixing-and-matching of ureido-pyrimidinone (UPy) based supramolecular polymers with antimicrobial peptides (AMPs) modified with the same UPy-moiety. The N-terminus of the AMPs was coupled in solution to an UPy-carboxylic acid synthon resulting in formation of a new amidic bond.
View Article and Find Full Text PDF