Interactions between the upper ocean and air-ice-ocean fluxes in the Southern Ocean play a critical role in global climate by impacting the overturning circulation and oceanic heat and carbon uptake. Remote and challenging conditions have led to sparse observational coverage, while ongoing field programmes often fail to collect sufficient information in the right place or at the time-space scales required to constrain the variability occurring in the coupled ocean-atmosphere system. Only within the last 10 years have we been able to directly observe and assess the role of the fine-scale ocean and rapidly evolving atmospheric marine boundary layer on the upper limb of the Southern Ocean's overturning circulation.
View Article and Find Full Text PDFPolar regions are among the most affected areas by the current global warming. In the Southern Hemisphere (SH), impacts of a warmer climate include decrease in sea-ice extent, changes in oceanic and in atmospheric circulation. Recently, some of these impacts were reinforced by the positive phase of the Southern Annular Mode (SAM).
View Article and Find Full Text PDFSea surface temperature (SST) anomalies caused by a warm core eddy (WCE) in the Southwestern Atlantic Ocean (SWA) rendered a crucial influence on modifying the marine atmospheric boundary layer (MABL). During the first cruise to support the Antarctic Modeling and Observation System (ATMOS) project, a WCE that was shed from the Brazil Current was sampled. Apart from traditional meteorological measurements, we used the Eddy Covariance method to directly measure the ocean-atmosphere sensible heat, latent heat, momentum, and carbon dioxide (CO) fluxes.
View Article and Find Full Text PDF