Micromachines (Basel)
April 2024
Microelectromechanical systems (MEMS) ohmic contact switches are considered to be a promising candidate for wireless communication applications. The longevity of MEMS switches is directly related to the reliability and performance of microcontacts. In this work, an improved microcontact test fixture with high actuation rates (KHz) and highly precise position control (nm) and force (nN) control was developed.
View Article and Find Full Text PDFIn microelectromechanical systems (MEMS) switches, the microcontact is crucial in determining reliability and performance. In the past, actual MEMS devices and atomic force microscopes (AFM)/scanning probe microscopes (SPM)/nanoindentation-based test fixtures have been used to collect relevant microcontact data. In this work, we designed a unique microcontact support structure for improved post-mortem analysis.
View Article and Find Full Text PDFSensors (Basel)
October 2018
Carbon monoxide (CO) is a toxic gas, and environmental pollutant. Its detection and control in residential and industrial environments are necessary in order to avoid potentially severe health problems in humans. In this review paper, we discuss the importance of furthering research in CO sensing technologies for finding the proper material with low-range detection ability in very optimum condition.
View Article and Find Full Text PDFIn this paper, a microelectromechanical system (MEMS) cantilever sensor was designed, modeled and fabricated to measure the terahertz (THz) radiation induced photoacoustic (PA) response of gases under low vacuum conditions. This work vastly improves cantilever sensitivity over previous efforts, by reducing internal beam stresses, minimizing out of plane beam curvature and optimizing beam damping. In addition, fabrication yield was improved by approximately 50% by filleting the cantilever's anchor and free end to help reduce high stress areas that occurred during device fabrication and processing.
View Article and Find Full Text PDF