Publications by authors named "Rona Oran"

The NASA Psyche mission's program to engage university undergraduates and the public in the mission is inspired by and built upon the extensive foundation of public engagement, educational outreach activities, and expertise of NASA and mission partner institutions. The program leverages the enthusiasm and contributions of undergraduates nationwide to the benefit of the mission, the students and their institutions and communities, and the broader public. Psyche Student Collaborations consists of four main programs, two (Psyche Capstone and Psyche Inspired) are available solely to undergraduates enrolled at universities or community colleges in the United States and its territories and two (Innovation Toolkit free online courses and Science Outreach Interns and Docents) invite broader participation by engaging the talents and creativity of undergraduate interns to help create content and events to reach the public and lifelong learners.

View Article and Find Full Text PDF

The objective of the Psyche Magnetometry Investigation is to test the hypothesis that asteroid (16) Psyche formed from the core of a differentiated planetesimal. To address this, the Psyche Magnetometer will measure the magnetic field around the asteroid to search for evidence of remanent magnetization. Paleomagnetic measurements of meteorites and dynamo theory indicate that a diversity of planetesimals once generated dynamo magnetic fields in their metallic cores.

View Article and Find Full Text PDF

The asteroid (16) Psyche may be the metal-rich remnant of a differentiated planetesimal, or it may be a highly reduced, metal-rich asteroidal material that never differentiated. The NASA Psyche mission aims to determine Psyche's provenance. Here we describe the possible solar system regions of origin for Psyche, prior to its likely implantation into the asteroid belt, the physical and chemical processes that can enrich metal in an asteroid, and possible meteoritic analogs.

View Article and Find Full Text PDF

The crusts of the Moon, Mercury, and many meteorite parent bodies are magnetized. Although the magnetizing field is commonly attributed to that of an ancient core dynamo, a longstanding hypothesized alternative is amplification of the interplanetary magnetic field and induced crustal field by plasmas generated by meteoroid impacts. Here, we use magnetohydrodynamic and impact simulations and analytic relationships to demonstrate that although impact plasmas can transiently enhance the field inside the Moon, the resulting fields are at least three orders of magnitude too weak to explain lunar crustal magnetic anomalies.

View Article and Find Full Text PDF